In mathematical optimization, the proximal operator is an operator associated with a proper,[note 1] lower semi-continuous convex function from a Hilbert space to , and is defined by: [1]

For any function in this class, the minimizer of the right-hand side above is unique, hence making the proximal operator well-defined. The proximal operator is used in proximal gradient methods, which is frequently used in optimization algorithms associated with non-differentiable optimization problems such as total variation denoising.

Properties

The of a proper, lower semi-continuous convex function enjoys several useful properties for optimization.

showing that the proximity operator is indeed a generalisation of the projection operator.
In particular, If is differentiable then the above equation reduces to .

Notes

  1. ^ An (extended) real-valued function f on a Hilbert space is said to be proper if it is not identically equal to , and is not in its image.

References

  1. ^ Neal Parikh and Stephen Boyd (2013). "Proximal Algorithms" (PDF). Foundations and Trends in Optimization. 1 (3): 123–231. Retrieved 2019-01-29.
  2. ^ Bauschke, Heinz H.; Combettes, Patrick L. (2017). Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. New York: Springer. doi:10.1007/978-3-319-48311-5. ISBN 978-3-319-48310-8.


See also