In ring theory, a branch of mathematics, a ring is called a **reduced ring** if it has no non-zero nilpotent elements. Equivalently, a ring is reduced if it has no non-zero elements with square zero, that is, *x*^{2} = 0 implies *x* = 0. A commutative algebra over a commutative ring is called a **reduced algebra** if its underlying ring is reduced.

The nilpotent elements of a commutative ring *R* form an ideal of *R*, called the nilradical of *R*; therefore a commutative ring is reduced if and only if its nilradical is zero. Moreover, a commutative ring is reduced if and only if the only element contained in all prime ideals is zero.

A quotient ring *R*/*I* is reduced if and only if *I* is a radical ideal.

Let denote nilradical of a commutative ring . There is a functor of the category of commutative rings into the category of reduced rings and it is left adjoint to the inclusion functor of into . The natural bijection is induced from the universal property of quotient rings.

Let *D* be the set of all zero-divisors in a reduced ring *R*. Then *D* is the union of all minimal prime ideals.^{[1]}

Over a Noetherian ring *R*, we say a finitely generated module *M* has locally constant rank if is a locally constant (or equivalently continuous) function on Spec *R*. Then *R* is reduced if and only if every finitely generated module of locally constant rank is projective.^{[2]}

- Subrings, products, and localizations of reduced rings are again reduced rings.
- The ring of integers
**Z**is a reduced ring. Every field and every polynomial ring over a field (in arbitrarily many variables) is a reduced ring. - More generally, every integral domain is a reduced ring since a nilpotent element is a fortiori a zero-divisor. On the other hand, not every reduced ring is an integral domain; for example, the ring
**Z**[*x*,*y*]/(*xy*) contains*x*+ (*xy*) and*y*+ (*xy*) as zero-divisors, but no non-zero nilpotent elements. As another example, the ring**Z**×**Z**contains (1, 0) and (0, 1) as zero-divisors, but contains no non-zero nilpotent elements. - The ring
**Z**/6**Z**is reduced, however**Z**/4**Z**is not reduced: the class 2 + 4**Z**is nilpotent. In general,**Z**/*n***Z**is reduced if and only if*n*= 0 or*n*is square-free. - If
*R*is a commutative ring and*N*is its nilradical, then the quotient ring*R*/*N*is reduced. - A commutative ring
*R*of prime characteristic*p*is reduced if and only if its Frobenius endomorphism is injective (cf. Perfect field.)

Reduced rings play an elementary role in algebraic geometry, where this concept is generalized to the notion of a reduced scheme.