Nome Struttura Formula
Aldeidi Adeidi RCHO
Chetoni Chetoni RCOR'
Acidi carbossilici Acidi Carbossilici RCOOH
Esteri Esteri RCOOR'
Tioesteri

Tioesteri

RSCOR
Ammidi Ammidi RCONH2
Alogenuri acilici Alogenuri acilici RCOX
Enoni Enoni RCOC(R')=CR"R"'
Anidridi Anidridi RCOOOCR'

In chimica organica un carbonile o gruppo carbonilico è un gruppo funzionale bivalente costituito da un atomo di carbonio e uno di ossigeno legati da un doppio legame: >C=O.[1]

Il C e O sono ibridati sp2. Il C è legato ai due gruppi e all'ossigeno da tre legami σ disposti su un piano a circa 120° l'uno dall'altro. Il carbonio e l'ossigeno sono inoltre legati da un legame π (derivante dalla sovrapposizione di un orbitale p di C con un orbitale p di O).[2] L'ossigeno ha anche due coppie di elettroni non condivise che occupano i due orbitali sp2 rimanenti.

Data l'alta differenza di elettronegatività, il gruppo carbonilico è polare: si forma infatti una nube carica negativamente presso l'ossigeno e una zona positiva presso il carbonio. Il carbonio è quindi suscettibile ad attacchi nucleofili tramite i quali il legame π viene rotto, attacchi che avvengono seguendo l'angolo di Bürgi-Dunitz.

Il gruppo carbonilico è presente in molte classi di composti organici, come evidenziato dalla tabella in alto. Data la sua alta reattività, esso è un gruppo funzionale fondamentale in chimica organica: può infatti essere utilizzato come punto di attacco per allungare o spezzare catene di atomi. L'applicazione più notevole si trova nelle proteine, lunghe catene dotate regolarmente di legami peptidici nei quali è contenuto il carbonile: molti enzimi agiscono proprio sul legame carbonile per spezzarlo e dividere le proteine in segmenti.

Reattività dei composti carbonilici con nucleofili

L'effetto del sostituente del composto carbonilico è determinante per la loro reattività. Un sostituente elettron attrattore (che ha una elettronegatività maggiore del carbonio), tenderà ad aumentare la carica parziale positiva del carbonio. In pratica questo sostituente avrà un effetto -I e renderà il carbonio carbonilico più suscettibile all'attacco nucleofilo. I più reattivi sono quindi i cloruri acilici, e a seguire le anidridi. Questi reagiscono senza bisogno di catalisi.

Nel caso delle aldeidi e dei chetoni dove i sostituenti hanno la stessa elettronegatività del carbonio carbonilico, l'effetto sarà diverso. L'ossigeno carbonilico attira la nuvola elettronica di legame col carbonio (essendo più elettronegativo del carbonio). Questo carbonio, però, ha dei sostituenti (gli altri carboni), che in qualche modo riescono a rifornire il carbonio carbonilico di una nuvola elettronica che gli permette di non essere così parzialmente positivo come il carbonio dei cloruri acilici. Anche se parzialmente positivo rimane comunque. Quindi aldeidi e chetoni reagiscono abbastanza agevolmente con nucleofili forti, mentre con nucleofili deboli hanno bisogno di un catalizzatore acido.

Se come sostituente è presente un atomo in grado di sostenere delle strutture di risonanza (è il caso di esteri e ammidi), questa struttura di risonanza stabilizza il carbonio carbonilico, che diventa quindi meno elettrofilo. Esteri e ammidi, per reagire con sostituzione nucleofila acilica, infatti, devono essere aiutati da un catalizzatore acido.

Infine gli acidi carbossilici reagiscono solo con un catalizzatore acido, perché con catalizzatore basico si forma il sale (il quale non può reagire con nucleofili sul carbonio carbossilico).

Proprietà fisiche e solubilità in acqua dei composti carbonilici

La polarizzazione presente nel legame C=O influenza anche le proprietà fisiche dei composti carbonilici, come per esempio il punto di ebollizione. Infatti in questo tipo di molecole i legami permanentemente polarizzati aumentano la tendenza delle molecole ad associarsi (interazioni dipolo-dipolo), che in chetoni e aldeidi causano temperature di ebollizione più alte degli idrocarburi con stesso peso molecolare ma più basse di quelle degli alcoli corrispondenti (poiché le interazioni dipolo-dipolo sono più deboli dei legami idrogeno).

La polarità del carbonile influenza anche la solubilità dei composti carbonilici: quelli con basso peso molecolare sono solubili in acqua perché, seppur non in grado di formare legami idrogeno tra di loro, tendono a formare legami idrogeno con altri tipi di composti aventi gruppi O-H o N-H.

Composti carbonilici α,β-insaturi

Acroleina, composto carbonilico α,β-insaturo.

I composti carbonilici α,β-insaturi sono una classe importante di composti con struttura generale (O=CR)−Cα=Cβ-R; per esempio gli enoni e gli enali. Questi composti, nei quali il gruppo carbonile è coniugato con un alchene (quindi l'aggettivo insaturo), hanno particolari proprietà. Diversamente dal caso dei carbonilici semplici, i composti carbonilici α,β-insaturi sono spesso attaccati dai nucleofili al carbonio β. Questo schema di reattività viene detto vinilogia (da 'analogia vinilica').[3] Esempi di composti carbonilici α,β-insaturi sono l'acroleina (propenale), il metil vinil chetone, l'ossido di mesitile,[4] l'acido acrilico, e l'acido maleico. Tali composti si possono preparare in laboratorio tramite la reazione aldolica e la reazione di Perkin.

Il gruppo carbonile, essendo un gruppo ad effetto mesomero -M, richiama a sé densità elettronica dall'alchene, il quale risulta, quindi, disattivato verso un elettrofilo, come bromo molecolare o acido cloridrico. Come regola generale con elettrofili asimmetrici, l'idrogeno si attacca alla posizione α in un'addizione elettrofila. D'altra parte, questi composti sono attivati verso nucleofili in un'addizione nucleofila coniugata.

Poiché i composti carbonilici α,β-insaturi sono elettrofili, molti di essi sono tossici, mutagenici e carcinogenici. Il DNA può attaccare il carbonio β e quindi essere alchilato. Tuttavia, il composto spazzino endogeno glutatione protegge naturalmente dagli elettrofili tossici nel corpo. Alcuni farmaci (amifostina, N-acetilcisteina) contenenti gruppi tiolici possono proteggere le biomolecole da tale alchilazione dannosa.

Chimica inorganica

In chimica inorganica il termine carbonile è usato per indicare la molecola di monossido di carbonio (CO) quando funge da legante nei complessi metallici. Nei metallocarbonili, la molecola di CO non può essere considerata soltanto come una base di Lewis in quanto, oltre a cedere un doppietto elettronico, questa riceve un doppietto elettronico dalla retrodonazione π del metallo. Questo avviene in quanto la molecola CO ha orbitali antileganti vuoti di opportuna simmetria (t2g) e di energia non elevata, capaci di combinarsi con gli orbitali d pieni del metallo, anch'essi di simmetria t2g, per dare origine a un legame π con l'atomo metallico (retrodonazione).[5] La retrodonazione ha come effetto la stabilizzazione del complesso dovuta a una maggiore separazione fra gli orbitali di non legame e di antilegame dell'atomo metallico.

Note

  1. ^ (EN) carbonyl compounds, definizione IUPAC Gold Book
  2. ^ Francis A. Carey, Organic Chemistry, 5ª ed., McGraw-Hill, 2004, p.706, ISBN 0-07-252170-8.
  3. ^ J. B. Hendrickson, D. J. Cram e G. S. Hammond, CHIMICA ORGANICA, traduzione di A. Fava, 2ª ed., Piccin, 1973, pp. 444-446.
  4. ^ L'ossido di mesitile è il prodotto della condensazione aldolica dell'acetone con se stesso.
  5. ^ J. E. Huheey, E. A. Keiter e R. L. Keiter, Chimica Inorganica, Principi, Strutture, Reattività, 2ª ed., Piccin, 1999, pp. 437-442, ISBN 88-299-1470-3.

Bibliografia

Voci correlate

Altri progetti

Controllo di autoritàGND (DE4147314-0
  Portale Chimica: il portale della scienza della composizione, delle proprietà e delle trasformazioni della materia