Coastal flooding during Hurricane Lili in 2002 on Louisiana Highway 1
Coastal flooding during Hurricane Lili in 2002 on Louisiana Highway 1

Coastal flooding normally occurs when dry and low-lying land is submerged by seawater.[1] The range of a coastal flooding is a result of the elevation of floodwater that penetrates the inland which is controlled by the topography of the coastal land exposed to flooding.[1][2] Flood damage modelling was limited to local, regional or national scales. However, with the presence of climate change and an increase in the population rates, flood events have intensified and called for a global interest in finding out different methods with both spatial and temporal dynamics.[3][4]

The seawater can flood the land via several different paths: direct flooding, overtopping of a barrier,[5] breaching of a barrier.

Coastal flooding is largely a natural event, however human influence on the coastal environment can exacerbate coastal flooding.[1][6][7][8] Extraction of water from groundwater reservoirs in the coastal zone can instigate subsidence of the land, thus increasing the risk of flooding.[6] Engineered protection structures along the coast such as sea walls alter the natural processes of the beach, often leading to erosion on adjacent stretches of the coast which also increases the risk of flooding.[1][8][9] Moreover, sea level rise and extreme weather caused by climate change will increase the intensity and amount of coastal flooding affecting hundreds of millions of people.[10]


The seawater can flood the land via several different paths:


Coastal flooding can result from a variety of different causes including storm surges created by storms like hurricanes and tropical cyclones, rising sea levels due to climate change and tsunamis.

Storm surge from Hurricane Carol in 1954
Storm surge from Hurricane Carol in 1954

Storms and storm surges

Storms, including hurricanes and tropical cyclones, can cause flooding through storm surges which are waves significantly larger than normal.[1][12] If a storm event coincides with the high astronomical tide, extensive flooding can occur.[13] Storm surges involve three processes:

  1. wind setup
  2. barometric setup
  3. wave setup

Wind blowing in an onshore direction (from the sea towards the land) can cause the water to 'pile-up' against the coast; this is known as wind setup. Low atmospheric pressure is associated with storm systems and this tends to increase the surface sea level; this is a barometric setup. Finally increased wave breaking height results in a higher water level in the surf zone, which is wave setup. These three processes interact to create waves that can overtop natural and engineered coastal protection structures thus penetrating seawater further inland than normal.[13][14]

Sea level rise

Satellite observations of sea level rise since 1993 (NASA)
Major cities threatened by sea level rise. The cities indicated are under threat of even a small sea level rise (of 1.6 foot/49 cm) compared to the level in 2010. Even moderate projections indicate that such a rise will have occurred by 2060.[15][16]

Sea level rise is an increase in the level of the world's oceans due to the effects of global warming.[17] the Intergovernmental Panel on Climate Change (IPCC) estimate global mean sea-level rise from 1990 to 2100 to be between nine and eighty-eight centimetres.[6] It is also predicted that with climate change there will be an increase in the intensity and frequency of storm events such as hurricanes.[8][18][19] This suggests that coastal flooding from storm surges will become more frequent with sea level rise.[8]

A rise in sea level alone threatens increased levels of flooding and permanent inundation of low-lying land as sea-level simply may exceed the land elevation.[6][20] This, therefore, indicates that coastal flooding associated with sea-level rise will become a significant issue in the next 100 years especially as human populations continue to grow and occupy the coastal zone.[18]

Sunny day flooding

October 17, 2016 tidal flooding on a sunny day, during the "king tides" in Brickell, Miami that peaked at 4 ft MLLW.
October 17, 2016 tidal flooding on a sunny day, during the "king tides" in Brickell, Miami that peaked at 4 ft MLLW.

Tidal flooding, also known as sunny day flooding[21] or nuisance flooding,[22] is the temporary inundation of low-lying areas, especially streets, during exceptionally high tide events, such as at full and new moons. The highest tides of the year may be known as the king tide, with the month varying by location. These kinds of floods tend not to be a high risk to property or human safety, but further stress coastal infrastructure in low lying areas.[23]

This kind of flooding is becoming more common in cities and other human-occupied coastal areas as sea level rise associated with climate change and other human-related environmental impacts such as coastal erosion and land subsidence increase the vulnerability of infrastructure.[24] Geographies faced with these issues can utilize coastal management practices to mitigate the effects in some areas, but increasingly these kinds of floods may develop into coastal flooding that requires managed retreat or other more extensive climate change adaptation practices are needed for vulnerable areas.

The last remaining house on Holland Island that collapsed and was torn down in the 2010s as erosion and tides reached the foundation.
The last remaining house on Holland Island that collapsed and was torn down in the 2010s as erosion and tides reached the foundation.


Coastal areas can be significantly flooded as the result of tsunami waves[25] which propagate through the ocean as the result of the displacement of a significant body of water through earthquakes, landslides, volcanic eruptions, and glacier calvings. There is also evidence to suggest that significant tsunami have been caused in the past by meteor impact into the ocean.[26] Tsunami waves are so destructive due to the velocity of the approaching waves, the height of the waves when they reach land, and the debris the water entrains as it flows over land can cause further damage.[25][27]

Depending on the magnitude of the tsunami waves and floods, it could cause severe injuries which call for precautionary interventions that prevent overwhelming aftermaths. It was reported that more than 200,000 people were killed in the earthquake and subsequent tsunami that hit the Indian Ocean, on December 26, 2004. [28]Not to mention, several diseases are a result of floods ranging from hypertension to chronic obstructive pulmonary diseases.[28]


Reducing global sea-level rise is said to be one way to prevent significant flooding of coastal areas at present times and in the future. This could be minimised by further reducing greenhouse gas emissions. However, even if significant emission decreases are achieved, there is already a substantial commitment to sea-level rise into the future.[6] International climate change policies like the Kyoto Protocol are seeking to mitigate the future effects of climate change, including sea-level rise.

In addition, more immediate measures of engineered and natural defenses are put in place to prevent coastal flooding.

Engineered defenses

Groynes are engineered structures that aim to prevent erosion of the beach front
Groynes are engineered structures that aim to prevent erosion of the beach front

There are a variety of ways in which humans are trying to prevent the flooding of coastal environments, typically through so-called hard engineering structures such as flood barriers, seawalls and levees.[9][29] That armouring of the coast is typical to protect towns and cities which have developed right up to the beachfront.[9] Enhancing depositional processes along the coast can also help prevent coastal flooding. Structures such as groynes, breakwaters, and artificial headlands promote the deposition of sediment on the beach thus helping to buffer against storm waves and surges as the wave energy is spent on moving the sediments in the beach than on moving water inland.[29]

Natural defenses

Mangroves are one of the coasts natural defense systems against storm surges and flooding. Their high biomass both above and below the water can help dissipate wave energy.
Mangroves are one of the coasts natural defense systems against storm surges and flooding. Their high biomass both above and below the water can help dissipate wave energy.

The coast does provide natural protective structures to guard against coastal flooding. These include physical features like gravel bars and sand dune systems, but also ecosystems such as salt marshes and mangrove forests have a buffering function. Mangroves and wetlands are often considered to provide significant protection against storm waves, tsunamis, and shoreline erosion through their ability to attenuate wave energy.[7][27] To protect the coastal zone from flooding, the natural defenses should, therefore, be protected and maintained.


As coastal flooding is typically a natural process, it is inherently difficult to prevent flood occurrence. If human systems are affected by flooding, an adaption to how that system operates on the coast through behavioral and institutional changes is required, these changes are the so-called non-structural mechanisms of coastal flooding response.[30]

Building regulations, coastal hazard zoning, urban development planning, spreading the risk through insurance, and enhancing public awareness are some ways of achieving this.[6][30][31] Adapting to the risk of flood occurrence can be the best option if the cost of building defense structures outweighs any benefits or if the natural processes in that stretch of coastline add to its natural character and attractiveness.[9]

A more extreme and often difficult to accept the response to coastal flooding is abandoning the area (also known as managed retreat) prone to flooding.[11] This however raises issues for where the people and infrastructure affected would go and what sort of compensation should/could be paid.

Social and economic impacts

The coastal zone (the area both within 100 kilometres distance of the coast and 100 metres elevation of sea level) is home to a large and growing proportion of the global population.[6][8] Over 50 percent of the global population and 65 percent of cities with populations over five million people are in the coastal zone.[32] In addition to the significant number of people at risk of coastal flooding, these coastal urban centres are producing a considerable amount of the global Gross Domestic Product (GDP).[8]

People's lives, homes, businesses, and city infrastructure like roads, railways, and industrial plants are all at risk of coastal flooding with massive potential social and economic costs.[19][33][34] The recent earthquakes and tsunami in Indonesia in 2004 and in Japan in March 2011 clearly illustrate the devastation coastal flooding can produce. Indirect economic costs can be incurred if economically important sandy beaches are eroded resulting in a loss of tourism in areas dependent on the attractiveness of those beaches.[31]

Top disasters by deaths in 2004

Top Disasters by Deaths in 2004[28]
Rank Disaster Month Country Number of Deaths
1 December 26 Tsunami December 12 countries 226,408
2 Hurricane Jeanne September Haiti 2,754
3 Flood May/June Haiti 2,665
4 Typhoon Winnie November Philippines 1,619
5 Flood June/August India 900
6 Flood June/August Bangladesh 730
7 Flood May/June Dominican Republic 688
8 Dengue epidemic January/April Indonesia 658
9 Earthquake February Morocco 628
10 Meningitis epidemic January/March Burkina Faso 527
11 Cyclone Galifo March Madagascar 363

Environmental impacts

Coastal flooding can result in a wide variety of environmental impacts on different spatial and temporal scales. Flooding can destroy coastal habitats such as coastal wetlands and estuaries and can erode dune systems.[11][6][31][32] These places are characterized by their high biological diversity therefore coastal flooding can cause significant biodiversity loss and potentially species extinctions.[25] In addition to this, these coastal features are the coasts natural buffering system against storm waves; consistent coastal flooding and sea-level rise can cause this natural protection to be reduced allowing waves to penetrate greater distances inland exacerbating erosion and furthering coastal flooding.[6] "By 2050, “moderate” (typically damaging) flooding is expected to occur, on average, more than 10 times as often as it does today, and can be intensified by local factors."[35]

Prolonged inundation of seawater after flooding can also cause salination of agriculturally productive soils thus resulting in a loss of productivity for long periods of time.[1][31] Food crops and forests can be completely killed off by salination of soils or wiped out by the movement of floodwaters.[6] Coastal freshwater bodies including lakes, lagoons, and coastal freshwater aquifers can also be affected by saltwater intrusion.[11][6][32] This can destroy these water bodies as habitats for freshwater organisms and sources of drinking water for towns and cities.[6][32]


The Thames Barrier provides flood control for London, U.K.
The Thames Barrier provides flood control for London, U.K.
Significant flooding in New Orleans as a result of Hurricane Katrina and the failure of the city's flood protection systems
Significant flooding in New Orleans as a result of Hurricane Katrina and the failure of the city's flood protection systems

Examples of existing coastal flooding issues include:

Hurricane Katrina in New Orleans

Hurricane Katrina made landfall as a category 3 cyclone on the Saffir–Simpson hurricane wind scale, indicating that it had become an only moderate level storm.[14] However, the catastrophic damage caused by the extensive flooding was the result of the highest recorded storm surges in North America.[14] For several days prior to the landfall of Katrina, wave setup was generated by the persistent winds of the cyclonic rotation of the system. This prolonged wave set up coupled with the very low central pressure level meant massive storm surges were generated.[37] Storm surges overtopped and breached the levees and floodwalls intended to protect the city from inundation.[7][14][37] Unfortunately, New Orleans is inherently prone to coastal flooding for a number of factors. Firstly, much of New Orleans is below sea level and is bordered by the Mississippi River therefore protection against flooding from both the sea and the river has become dependent on engineered structures. Land-use change and modification to natural systems in the Mississippi River have rendered the natural defenses for the city less effective. Wetland loss has been calculated to be around 1,900 square miles (4,920 square kilometres) since 1930. This is a significant amount as four miles of wetland are estimated to reduce the height of a storm surge by one foot (30 centimeters).[7]

A village near the coast of Sumatra lies in ruin on 2 January 2005 after the devastating tsunami that struck on Boxing Day 2004
A village near the coast of Sumatra lies in ruin on 2 January 2005 after the devastating tsunami that struck on Boxing Day 2004

Indonesia and Japan earthquake-related tsunamis

Further information: List of tsunamis

2004 Indian Ocean earthquake and tsunami: An earthquake of approximately magnitude 9.0 struck off the coast of Sumatra, Indonesia causing the propagation of a massive tsunami throughout the Indian Ocean.[27] This tsunami caused significant loss of human life, an estimate of 280,000 – 300,000 people has been reported [25] and caused extensive damage to villages, towns, and cities and to the physical environment. The natural structures and habitats destroyed or damaged include coral reefs, mangroves, beaches, and seagrass beds.[27] The more recent earthquake and tsunami in Japan in March 2011 (2011 Tōhoku earthquake and tsunami) also clearly illustrates the destructive power of tsunamis and the turmoil of coastal flooding.

Future research

There is a need for future research into:[citation needed]

See also


  1. ^ a b c d e f g Ramsay & Bell 2008
  2. ^ Doornkamp 1998.
  3. ^ Jongman, Brenden; Ward, Philip J.; Aerts, Jeroen C. J. H. (2012-10-01). "Global exposure to river and coastal flooding: Long term trends and changes". Global Environmental Change. 22 (4): 823–835. doi:10.1016/j.gloenvcha.2012.07.004. ISSN 0959-3780.
  4. ^ Tanoue, Masahiro & Hirabayashi, Yukiko & Ikeuchi, Hiroaki. (2016). Global-scale river flood vulnerability in the last 50 years. Scientific Reports. 6. 10.1038/srep36021.
  5. ^ a b Almar, Rafael; Ranasinghe, Roshanka; Bergsma, Erwin W. J.; Diaz, Harold; et al. (18 June 2021). "A global analysis of extreme coastal water levels with implications for potential coastal overtopping". Nature Communications. 12 (1): 3775. Bibcode:2021NatCo..12.3775A. doi:10.1038/s41467-021-24008-9. PMC 8213734. PMID 34145274.
  6. ^ a b c d e f g h i j k l Nicholls 2002
  7. ^ a b c d Griffis 2007
  8. ^ a b c d e f Dawson et al. 2009
  9. ^ a b c d Pope 1997
  10. ^ "Report: Flooded Future: Global vulnerability to sea level rise worse than previously understood". Retrieved 2020-11-09.
  11. ^ a b c d Gallien, Schubert & Sanders 2011
  12. ^ Kurian et al. 2009
  13. ^ a b Benavente et al. 2006
  14. ^ File:Projections of global mean sea level rise by Parris et al. (2012).png
  15. ^ Sea level rise chart
  16. ^ "Sea Level Rise | National Geographic Society". Retrieved 2022-12-08.
  17. ^ a b Nicholls et al. 2007
  18. ^ a b Suarez et al. 2005
  19. ^ Michael 2007
  20. ^ Erik Bojnansky (March 9, 2017). "Sea levels are rising, so developers and governments need to band together: panel". The Real Deal. Retrieved March 10, 2017.
  21. ^ "What is nuisance flooding?". National Oceanic and Atmospheric Administration. Retrieved December 13, 2016.
  22. ^ "What is nuisance flooding? Defining and monitoring an emerging challenge |". Retrieved 2021-01-07.
  23. ^ Karegar, Makan A.; Dixon, Timothy H.; Malservisi, Rocco; Kusche, Jürgen; Engelhart, Simon E. (2017-09-11). "Nuisance Flooding and Relative Sea-Level Rise: the Importance of Present-Day Land Motion". Scientific Reports. 7 (1): 11197. Bibcode:2017NatSR...711197K. doi:10.1038/s41598-017-11544-y. ISSN 2045-2322. PMC 5593944. PMID 28894195.
  24. ^ a b c d Cochard et al. 2008
  25. ^ Goff et al. 2010
  26. ^ a b c d Alongi 2008
  27. ^ a b c Llewellyn, CAPT Mark (2006). "Floods and Tsunamis" (PDF). The Surgical Clinics of North America. 86 (3): 557–578. doi:10.1016/j.suc.2006.02.006. PMID 16781270.
  28. ^ a b Short & Masselink 1999
  29. ^ a b Dawson et al. 2011
  30. ^ a b c d Snoussi, Ouchani & Niazi 2008
  31. ^ a b c d e Hunt & Watkiss 2011
  32. ^ Tomita et al. 2006
  33. ^ Nadal et al. 2010
  34. ^ "2022 Sea Level Rise Technical Report". Retrieved 2022-02-16.
  35. ^ Horner 1986
  36. ^ a b Ebersole et al. 2010


  • Benavente, J.; Del Río, L.; Gracia, F. J.; Martínez-del-Pozo, J. A. (2006). "Coastal flooding hazard related to storms and coastal evolution in Valdelagrana spit (Cadiz Bay Natural Park, SW Spain)". Continental Shelf Research. 26 (9): 1061–1076. Bibcode:2006CSR....26.1061B. doi:10.1016/j.csr.2005.12.015.
  • Cochard, R.; Ranamukhaarachchi, S. L.; Shivakoti, G. P.; Shipin, O. V.; Edwards, P. J.; Seeland, K. T. (2008). "The 2004 tsunami in Aceh and Southern Thailand: A review on coastal ecosystems, wave hazards and vulnerability". Perspectives in Plant Ecology, Evolution and Systematics. 10 (1): 3–40. doi:10.1016/j.ppees.2007.11.001.
  • Dawson, J. R.; Ball, T.; Werritty, J.; Werritty, A.; Hall, J. W.; Roche, N. (2011). "Assessing the effectiveness of non-structural flood management measures in the Thames Estuary under conditions of socio-economic and environmental change". Global Environmental Change. 21 (2): 628–646. doi:10.1016/j.gloenvcha.2011.01.013.
  • Ebersole, B. A.; Westerink, J. J.; Bunya, S.; Dietrich, J. C.; Cialone, M. A. (2010). "Development of storm surge which led to flooding in St. Bernard Polder during Hurricane Katrina". Ocean Engineering. 37 (1): 91–103. doi:10.1016/j.oceaneng.2009.08.013.
  • Gallien, T. W.; Schubert, J. E.; Sanders, B. F. (2011). "Predicting tidal flooding of urbanized embayments: A modelling framework and data requirements". Coastal Engineering. 58 (6): 567–577. doi:10.1016/j.coastaleng.2011.01.011.
  • Kurian, N. P.; Nirupama, N.; Baba, M.; Thomas, K. V. (2009). "Coastal flooding due to synoptic scale , meso-scale and remote forcings". Natural Hazards. 48 (2): 259–273. doi:10.1007/s11069-008-9260-4. S2CID 128608129.
  • Link, L. E. (2010). "The anatomy of a disaster, an overview of Hurricane Katrina and New Orleans". Ocean Engineering. 37 (1): 4–12. doi:10.1016/j.oceaneng.2009.09.002.
  • Nadal, N. C.; Zapata, R. E.; Pagán, I.; López, R.; Agudelo, J. (2010). "Building damage due to riverine and coastal floods". Journal of Water Resources Planning and Management. 136 (3): 327–336. doi:10.1061/(ASCE)WR.1943-5452.0000036.
  • Nicholls, R. J.; Wong, P. P.; Burkett, V. R.; Codignotto, J. O.; Hay, J. E.; McLean, R. F.; Ragoonaden, S.; Woodroffe, C. D. (2007). "Coastal systems and low-lying areas". In Parry, M. L.; Canziani, O. F.; Palutikof, J. P.; Linden, P. J.; Hanson, C. E. (eds.). Climate Change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press. pp. 315–357.
  • Pope, J. (1997). "Responding to coastal erosion and flooding damages". Journal of Coastal Research. 3 (3): 704–710. JSTOR 4298666.
  • Short, A. D.; Masselink, G. (1999). "Embayed and Structurally Controlled Beaches". Handbook of Beach and Shoreface Morphodynamics. John Wiley and Sons. pp. 231–250. ISBN 978-0471965701.
  • Snoussi, M.; Ouchani, T.; Niazi, S. (2008). "Vulnerability assessment of the impact of sea-level rise and flooding on the Moroccan coast: The case of the Mediterranean Eastern Zone". Estuarine, Coastal and Shelf Science. 77 (2): 206–213. Bibcode:2008ECSS...77..206S. doi:10.1016/j.ecss.2007.09.024.
  • Suarez, P.; Anderson, W.; Mahal, V.; Lakshmanan, T. R. (2005). "Impacts of flooding and climate change on urban transportation: A systemwide performance assessment of the Boston Metro Area". Transportation Research Part D: Transport and Environment. 10 (3): 231–244. doi:10.1016/j.trd.2005.04.007.
  • Tomita, T.; Imamura, F.; Arikawa, T.; Yasuda, T.; Kawata, Y. (2006). "Damage caused by the 2004 Indian Ocean Tsunami on the South-western coast of Sri Lanka". Coastal Engineering. 48 (2): 99–116. doi:10.1142/S0578563406001362. S2CID 129820041.