coulomb
Charles de Coulomb.png
Charles-Augustin de Coulomb
General information
Unit systemSI
Unit ofelectric charge
SymbolC
Named afterCharles-Augustin de Coulomb
Conversions
1 C in ...... is equal to ...
   SI base units   As
   CGS units   ≘ 2997924580 statC
   Atomic units   6.241509×1018 e[1]

The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI).[2][3] In the present version of the SI it is equal to the electric charge delivered by a 1 ampere constant current in 1 second and to 5×1018/0.801088317 elementary charges, e, (about 6.241509×1018 e).[3][2]

Name and history

The coulomb is named after Charles-Augustin de Coulomb. As with every SI unit named for a person, its symbol starts with an upper case letter (C), but when written in full it follows the rules for capitalisation of a common noun; i.e., "coulomb" becomes capitalised at the beginning of a sentence and in titles, but is otherwise in lower case.[4]

By 1878, the British Association for the Advancement of Science had defined the volt, ohm, and farad, but not the coulomb.[5] In 1881, the International Electrical Congress, now the International Electrotechnical Commission (IEC), approved the volt as the unit for electromotive force, the ampere as the unit for electric current, and the coulomb as the unit of electric charge.[6] At that time, the volt was defined as the potential difference [i.e., what is nowadays called the "voltage (difference)"] across a conductor when a current of one ampere dissipates one watt of power. The coulomb (later "absolute coulomb" or "abcoulomb" for disambiguation) was part of the EMU system of units. The "international coulomb" based on laboratory specifications for its measurement was introduced by the IEC in 1908. The entire set of "reproducible units" was abandoned in 1948 and the "international coulomb" became the modern coulomb.[7]

Definition

The SI defines the coulomb in terms of the ampere and second: 1 C = 1 A × 1 s.[8] The ampere is defined by taking the fixed numerical value of the elementary charge e to be 1.602176634×10−19 coulombs.[9] The 2019 redefinition of the ampere and other SI base units fixed the numerical value of the elementary charge when expressed in coulombs, and therefore fixed the value of the coulomb when expressed as a multiple of the fundamental charge (the numerical values of those quantities are the multiplicative inverses of each other). The ampere was previously defined in terms of two wires of infinite extent.

One coulomb is the charge of approximately 6241509074460762607.776 elementary charges, where the number is the reciprocal of 1.602176634×10−19 C.[10] This is also 160.2176634 zC of charge. The exact value of 1 coulomb is

elementary charges where and the numerator is a prime number.

It is impossible to realize exactly 1 C of charge, since the number of elementary charges is not an integer. It is also impossible to realize charge at the yoctocoulomb scale.

SI prefixes

Main article: Orders of magnitude (charge)

Like other SI units, the coulomb can be modified by adding a prefix that multiplies it by a power of 10.

SI multiples of coulomb (C)
Submultiples Multiples
Value SI symbol Name Value SI symbol Name
10−1 C dC decicoulomb 101 C daC decacoulomb
10−2 C cC centicoulomb 102 C hC hectocoulomb
10−3 C mC millicoulomb 103 C kC kilocoulomb
10−6 C µC microcoulomb 106 C MC megacoulomb
10−9 C nC nanocoulomb 109 C GC gigacoulomb
10−12 C pC picocoulomb 1012 C TC teracoulomb
10−15 C fC femtocoulomb 1015 C PC petacoulomb
10−18 C aC attocoulomb 1018 C EC exacoulomb
10−21 C zC zeptocoulomb 1021 C ZC zettacoulomb
10−24 C yC yoctocoulomb 1024 C YC yottacoulomb
10−27 C rC rontocoulomb 1027 C RC ronnacoulomb
10−30 C qC quectocoulomb 1030 C QC quettacoulomb
Common multiples are in bold face.

Conversions

In everyday terms

See also

Notes and references

  1. ^ 6.241509074...×1018 is the reciprocal of the 2018 CODATA recommended value of the elementary charge, 1.602176634×10−19 C.
  2. ^ a b "SI Brochure (2019)" (PDF). SI Brochure. BIPM. p. 127. Retrieved May 23, 2019.
  3. ^ a b BIPM (20 May 2019). "Mise en pratique for the definition of the ampere in the SI". BIPM. Retrieved 18 February 2022.
  4. ^ "SI Brochure, Appendix 1" (PDF). BIPM. p. 144.
  5. ^ W. Thomson, et al. (1873) "First report of the Committee for the Selection and Nomenclature of Dynamical and Electrical Units," Report of the 43rd Meeting of the British Association for the Advancement of Science (Bradford, September 1873), pp. 222–225. From p. 223: "The "ohm", as represented by the original standard coil, is approximately 109 C.G.S. units of resistance; the "volt" is approximately 108 C.G.S. units of electromotive force; and the "farad" is approximately 1/109 of the C.G.S. unit of capacity."
  6. ^ (Anon.) (September 24, 1881) "The Electrical Congress," The Electrician, 7.
  7. ^ Donald Fenna, A Dictionary of Weights, Measures, and Units, OUP (2002), 51f.
  8. ^ "SI brochure (2019)" (PDF). SI Brochure. BIPM. p. 130. Retrieved May 23, 2019.
  9. ^ "SI brochure (2019)" (PDF). SI Brochure. BIPM. p. 132. Retrieved May 23, 2019.
  10. ^ "2018 CODATA Value: elementary charge". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.
  11. ^ "2018 CODATA Value: Faraday constant". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.
  12. ^ Martin Karl W. Pohl. "Physics: Principles with Applications" (PDF). DESY. Archived from the original (PDF) on 2011-07-18.
  13. ^ Hasbrouck, Richard. Mitigating Lightning Hazards Archived 2013-10-05 at the Wayback Machine, Science & Technology Review May 1996. Retrieved on 2009-04-26.
  14. ^ How to do everything with digital photography – David Huss, p. 23, at Google Books, "The capacity range of an AA battery is typically from 1100–2200 mAh."