Material flow analysis (MFA), also referred to as substance flow analysis (SFA), is an analytical method to quantify flows and stocks of materials or substances in a well-defined system. MFA is an important tool to study the bio-physical aspects of human activity on different spatial and temporal scales. It is considered a core method of industrial ecology or anthropogenic, urban, social and industrial metabolism. MFA is used to study material, substance, or product flows across different industrial sectors or within ecosystems. MFA can also be applied to a single industrial installation, for example, for tracking nutrient flows through a waste water treatment plant. When combined with an assessment of the costs associated with material flows this business-oriented application of MFA is called material flow cost accounting. MFA is an important tool to study the circular economy and to devise material flow management. Since the 1990s, the number of publications related to material flow analysis has grown steadily. Peer-reviewed journals that publish MFA-related work include the Journal of Industrial Ecology, Ecological Economics, Environmental Science and Technology, and Resources, Conservation, and Recycling.[1]



This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (June 2023) (Learn how and when to remove this template message)

Human needs such as shelter, food, transport, or communication require materials like wood, starch, sugar, iron and steel, copper, or semiconductors. As society develops and economic activity expands, material production, use, and disposal increase to a level where unwanted impacts on environment and society cannot be neglected anymore, neither locally nor globally. Material flows are at the core of local environmental problems such as leaching from landfills or oil spills. Rising concern about global warming puts a previously unimportant waste flow, carbon dioxide, on top of the political and scientific agenda. The gradual shift from primary material production to urban mining in developed countries requires a detailed assessment of in-use and obsolete stocks of materials within human society. Scientists, industries, government bodies, and NGOs therefore need a tool that complements economic accounting and modelling. They need a systematic method to keep track of and display stocks and flows of the materials entering, staying within, and leaving the different processes in the anthroposphere. Material flow analysis is such a method.

Basic principles

MFA is based on two fundamental and well-established scientific principles, the systems approach and mass balance.[2][3] The system definition is the starting point of every MFA study.

System definition

Basic MFA system without quantification.
A more general MFA system without quantification.

An MFA system is a model of an industrial plant, an industrial sector or a region of concern. The level of detail of the system model is chosen to fit the purpose of the study. An MFA system always consists of the system boundary, one or more processes, material flows between processes, and stocks of materials within processes. Physical exchange between the system and its environment happens via flows that cross the system boundary. Contrary to the preconceived notion that a system represents a specific industrial installation, systems and processes in MFA can represent much larger and more abstract entities as long as they are well-defined. The explicit system definition helps the practitioner to locate the available quantitative information in the system, either as stocks within certain processes or as flows between processes. An MFA system description can be refined by disaggregating processes or simplified by aggregating processes.

Next to specifying the arrangement of processes, stocks, and flows in the system definition, the practitioner also needs to indicate the scale and the indicator element or material of the system studied. The spatial scale describes the geographic entity that is covered by the system. A system representing a certain industrial sector can be applied to the USA, China, certain world regions, or the world as a whole. The temporal scale describes the point in time or the time span for which the system is quantified. The indicator element or material of the system is the physical entity that is measured and for which the mass balance holds. As the name says, an indicator element is a certain chemical element such as cadmium or a substance such as CO2. In general, a material or a product can also be used as indicator as long as a process balance can be established for it. Examples of more general indicators are goods such as passenger cars, materials like steel, or other physical quantities such as energy.

MFA requires practitioners to make precise use of the terms 'material', 'substance', or 'good', as laid out, for example, in chapter 2.1 of Brunner and Rechberger,[4] one of the main references for the MFA method.

A typical MFA system with quantification.

Process balance

One of the main purposes of MFA is to quantify the metabolism of the elements of the system. Unlike economic accounting, MFA also covers non-economic waste flows, emissions to the environment, and non-market natural resources.

Model of an industrial process in economic accounting (top) and in physical accounting (bottom).

The process balance is a first order physical principle that turns MFA into a powerful accounting and analysis tool. The nature of the processes in the system determine which balances apply. For a process 'oil refinery', for example, one can establish a mass balance for each chemical element, while this is not possible for a nuclear power station. A car manufacturing plant respects the balance for steel, but a steel mill does not.

When quantifying MFA systems either by measurements or from statistical data, mass and other process balances have to be checked to ensure the correctness of the quantification and to reveal possible data inconsistencies or even misconceptions in the system such as the omission of a flow or a process. Conflicting information can be reconciled using data validation and reconciliation, and the STAN-software offers basic reconciliation functionality that is suitable for many MFA application.[6]

Examples of MFA applications on different spatial and temporal scales

MFA studies are conducted on various spatial and temporal scales and for a variety of elements, substances, and goods. They cover a wide range of process chains and material cycles. Several examples:

Historical development

Recent development

Conducting a state-of-the-art MFA

A state-of-the-art MFA consists of the following steps:[4]

The difference between material and substance flow analysis

While the term 'substance' in 'substance flow analysis (SFA) always refers to chemical substances, the term 'material' in 'material flow analysis (MFA)' has a much wider scope. According to Brunner and Rechberger[4] the term 'material' comprises substances AND goods, and the reason for this wide scope is the wish to apply MFA not only to chemical elements or substances but also to materials like steel, timber, or products like cars or buildings. It is thus possible to conduct an MFA for the passenger vehicle fleet by recording the vehicles entering and leaving the use phase.

Relation to other methods

MFA is complementary to the other core industrial ecology methods life cycle assessment (LCA) and input-output (IO) models.[43] Some overlaps between the different methods exist as they all share the system approach and to some extent the mass balance principle. The methods mainly differ in purpose, scope, and data requirements.

MFA studies often cover the entire cycle (mining, production, manufacturing, use, waste handling) of a certain substance within a given geographical boundary and time frame. Material stocks are explicit in MFA, which makes this method suitable for studies involving resource scarcity and recycling from old scrap. The common use of time series (dynamic modelling) and lifetime models makes MFA a suitable tool for assessing long-term trends in material use.

See also


  1. ^ "Resources, Conservation and Recycling".
  2. ^ Marina Fischer-Kowalski, The Intellectual History of Materials Flow Analysis, Part I, 1860-1970, Journal of Industrial Ecology 2(1), 1998, pp 61-78, doi:10.1162/jiec.1998.2.1.61.
  3. ^ Marina Fischer-Kowalski, The Intellectual History of Materials Flow Analysis, Part II, 1970-1998, Journal of Industrial Ecology 2(4), 1998, pp 107-136, doi:10.1162/jiec.1998.2.4.107.
  4. ^ a b c d e f g h Brunner, P.H.; Rechberger, H. (2004). Practical Handbook of Material Flow Analysis. Lewis Publishers, New York. ISBN 978-1-56670-604-9.
  5. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "chemical element".
  6. ^ "Home".
  7. ^ Eurostat (2013). Economy-wide Material Flow Accounts (EW-MFA) (Report). Eurostat.
  8. ^ Krausmann, Fridolin; Weisz, Helga; Eisenmenger, Nina; Schütz, Helmut; Haas, Willi; Schaffartzik, Anke (2015). "Economy-wide Material Flow Accounting - Introduction and Guide. Social Ecology Working paper 151". Social Ecology Working Paper. Institute of Social Ecology, Alpen-Adria University, Klagenfurt/Graz/Vienna. ISSN 1726-3808.
  9. ^ Baccini and Bader 1996, 'Regionaler Stoffhaushalt' (Regional metabolism), Spektrum Akademischer Verlag, Heidelberg (Germany), ISBN 3-86025-235-6
  10. ^ Baccini P. & Brunner P.H. (2012). Metabolism of the Anthroposphere, Analysis, Evaluation, Design. 2nd Edition, The MIT Press, Cambridge, MA. ISBN 9780262016650
  11. ^ 'Predicting future emissions based on characteristics of stocks', Ecological Economics, 2002, 41(2), 223-234.
  12. ^ "Wuppertal Institute". Retrieved 3 July 2011.
  13. ^ Schmidt-Bleek, Friedrich (1994), "MIPS: Ein neues ökologisches Maß", Wieviel Umwelt braucht der Mensch?, pp. 97–141, doi:10.1007/978-3-0348-5650-8_4, ISBN 978-3-0348-5651-5
  14. ^ Bringezu, Stefan; Schütz, Helmut; Moll, Stephan (March 2003). "Rationale for and Interpretation of Economy-Wide Materials Flow Analysis and Derived Indicators". Journal of Industrial Ecology. 7 (2): 43–64. Bibcode:2003JInEc...7...43B. doi:10.1162/108819803322564343. ISSN 1088-1980. S2CID 154386004.
  15. ^ Pannekoucke, Sabine (2005-04-20). "Dominique Bourg et Suren Erkman (eds), 2003, Perspectives on Industrial Ecology, Greenleaf Publishing, Sheffield, 384 pages ISBN 1874719462". Développement durable et territoires. doi:10.4000/developpementdurable.961. ISSN 1772-9971. S2CID 193004848.
  16. ^ Klancko, Robert John (June 2003). "A Handbook of Industrial Ecology. Robert U. Ayres and Leslie W. Ayres, eds. 2002. Edward Elgar Publishing, Northampton, MA. 680 pp. $285 hardcover". Environmental Practice. 5 (2): 183–184. doi:10.1017/s1466046603261123. ISSN 1466-0466. S2CID 128714127.
  17. ^ Bringezu, Stefan; Schütz, Helmut; Steger, Sören; Baudisch, Jan (November 2004). "International comparison of resource use and its relation to economic growth". Ecological Economics. 51 (1–2): 97–124. doi:10.1016/j.ecolecon.2004.04.010. ISSN 0921-8009.
  18. ^ Bringezu, Stefan; van de Sand, Isabel; Schütz, Helmut; Bleischwitz, Raimund; Moll, Stephan (2009), "Analysing global resource use of national and regional economies across various levels", Sustainable Resource Management: Global Trends, Visions and Policies, Greenleaf Publishing Limited, pp. 10–51, doi:10.9774/gleaf.978-1-907643-07-1_3, ISBN 978-1-907643-07-1, retrieved 2023-10-01
  19. ^ Adriaanse, Albert (1997). Resource flows: the material basis of industrial economies. World Resources Institute. Washington, DC: World Resources Institute. ISBN 978-1-56973-209-0.
  20. ^ Bringezu, Stefan; Bleischwitz, Raimund, eds. (2017-09-08). Sustainable Resource Management. Routledge. doi:10.4324/9781351279284. ISBN 978-1-351-27928-4. S2CID 106557145.
  21. ^ Mostert; Bringezu (2019-04-02). "Measuring Product Material Footprint as New Life Cycle Impact Assessment Method: Indicators and Abiotic Characterization Factors". Resources. 8 (2): 61. doi:10.3390/resources8020061. ISSN 2079-9276.
  22. ^ Sameer, Husam; Weber, Viktoria; Mostert, Clemens; Bringezu, Stefan; Fehling, Ekkehard; Wetzel, Alexander (2019-03-13). "Environmental Assessment of Ultra-High-Performance Concrete Using Carbon, Material, and Water Footprint". Materials. 12 (6): 851. Bibcode:2019Mate...12..851S. doi:10.3390/ma12060851. ISSN 1996-1944. PMC 6470619. PMID 30871243.
  23. ^ Hatfield-Dodds, Steve; Schandl, Heinz; Bringezu, Stefan; Che, Nhu; Ekins, Paul; Flörke, Martina; Frank, Stefan; Havlik, Petr; Hüfner, Rebecca (2020-09-16), "Two outlooks for resource use", Global Resources Outlook 2019, UN, pp. 98–123, doi:10.18356/d9b3639f-en, ISBN 978-92-807-3741-7, S2CID 234645562, retrieved 2023-10-01
  24. ^ "UNEP". Retrieved 3 July 2011.
  25. ^ "IPCC". Retrieved 3 July 2011.
  26. ^ "Accounting in the EU". Retrieved 3 July 2011.
  27. ^ "Accounting in Japan" (PDF). Archived from the original (PDF) on 27 September 2011. Retrieved 3 July 2011.
  28. ^ "World Resources Forum". Retrieved 16 September 2019.
  29. ^ Nakamura, Shinichiro; Nakajima, Kenichi; Kondo, Yasushi; Nagasaka, Tetsuya (2007). "The Waste Input-Output Approach to Materials Flow Analysis". Journal of Industrial Ecology. 11 (4): 50–63. Bibcode:2007JInEc..11...50N. doi:10.1162/jiec.2007.1290. ISSN 1088-1980. S2CID 154240391.
  30. ^ Nakamura, Shinichiro; Kondo, Yasushi (2009). Waste Input-Output Analysis. Concepts and Application to Industrial Ecology. Springer. ISBN 978-1-4020-9901-4.
  31. ^ Nakamura, Shinichiro; Kondo, Yasushi; Matsubae, Kazuyo; Nakajima, Kenichi; Nagasaka, Tetsuya (2011-02-01). "UPIOM: A New Tool of MFA and Its Application to the Flow of Iron and Steel Associated with Car Production". Environmental Science & Technology. 45 (3): 1114–1120. Bibcode:2011EnST...45.1114N. doi:10.1021/es1024299. ISSN 0013-936X. PMID 21174465.
  32. ^ Nakajima, Kenichi; Ohno, Hajime; Kondo, Yasushi; Matsubae, Kazuyo; Takeda, Osamu; Miki, Takahiro; Nakamura, Shinichiro; Nagasaka, Tetsuya (2013-05-07). "Simultaneous Material Flow Analysis of Nickel, Chromium, and Molybdenum Used in Alloy Steel by Means of Input–Output Analysis". Environmental Science & Technology. 47 (9): 4653–4660. Bibcode:2013EnST...47.4653N. doi:10.1021/es3043559. ISSN 0013-936X. PMID 23528100.
  33. ^ "". Retrieved 3 July 2011.
  34. ^ Daniel B. Müller, Stock dynamics for forecasting material flows--Case study for housing in The Netherlands, Ecological Economics 59(1), 2006, pp 142-156, doi:10.1016/j.ecolecon.2005.09.025.
  35. ^ Nakamura, Shinichiro; Kondo, Yasushi; Kagawa, Shigemi; Matsubae, Kazuyo; Nakajima, Kenichi; Nagasaka, Tetsuya (2014-07-01). "MaTrace: Tracing the Fate of Materials over Time and Across Products in Open-Loop Recycling". Environmental Science & Technology. 48 (13): 7207–7214. Bibcode:2014EnST...48.7207N. doi:10.1021/es500820h. ISSN 0013-936X. PMID 24872019.
  36. ^ Pauliuk, Stefan; Kondo, Yasushi; Nakamura, Shinichiro; Nakajima, Kenichi (2017-01-01). "Regional distribution and losses of end-of-life steel throughout multiple product life cycles—Insights from the global multiregional MaTrace model". Resources, Conservation and Recycling. 116: 84–93. doi:10.1016/j.resconrec.2016.09.029. ISSN 0921-3449. PMC 5302007. PMID 28216806.
  37. ^ Godoy León, María Fernanda; Blengini, Gian Andrea; Dewulf, Jo (2020-07-01). "Cobalt in end-of-life products in the EU, where does it end up? - The MaTrace approach". Resources, Conservation and Recycling. 158: 104842. doi:10.1016/j.resconrec.2020.104842. ISSN 0921-3449. PMC 7185230. PMID 32624643.
  38. ^ Jarrín Jácome, Gabriela; Godoy León, María Fernanda; Alvarenga, Rodrigo A. F.; Dewulf, Jo (2021). "Tracking the Fate of Aluminium in the EU Using the MaTrace Model". Resources. 10 (7): 72. doi:10.3390/resources10070072. ISSN 2079-9276.
  39. ^ Klose, Stefanie; Pauliuk, Stefan (2021). "Quantifying longevity and circularity of copper for different resource efficiency policies at the material and product levels". Journal of Industrial Ecology. 25 (4): 979–993. Bibcode:2021JInEc..25..979K. doi:10.1111/jiec.13092. ISSN 1088-1980.
  40. ^ Nakamura, Shinichiro; Kondo, Yasushi; Nakajima, Kenichi; Ohno, Hajime; Pauliuk, Stefan (2017-09-05). "Quantifying Recycling and Losses of Cr and Ni in Steel Throughout Multiple Life Cycles Using MaTrace-Alloy". Environmental Science & Technology. 51 (17): 9469–9476. Bibcode:2017EnST...51.9469N. doi:10.1021/acs.est.7b01683. ISSN 0013-936X. PMID 28806506.
  41. ^ Helbig, Christoph; Kondo, Yasushi; Nakamura, Shinichiro (2022). "Simultaneously tracing the fate of seven metals at a global level with MaTrace-multi". Journal of Industrial Ecology. 26 (3): 923–936. Bibcode:2022JInEc..26..923H. doi:10.1111/jiec.13219. ISSN 1088-1980.
  42. ^ "3R in Japan". Retrieved 3 July 2011.
  43. ^ Gao, Jiyao; You, Fengqi (2018). "Dynamic Material Flow Analysis-Based Life Cycle Optimization Framework and Application to Sustainable Design of Shale Gas Energy Systems". ACS Sustainable Chemistry & Engineering. 6 (9): 11734–11752. doi:10.1021/acssuschemeng.8b01983. S2CID 105839057.

Further reading