NPL network schematic

The NPL network, or NPL Data Communications Network, was a local area computer network operated by a team from the National Physical Laboratory (NPL) in London that pioneered the concept of packet switching.

Based on designs first conceived by Donald Davies in 1965, development work began in 1966. Construction began in 1968 and elements of the first version of the network, the Mark I, became operational in early 1969 then fully operational in January 1970. The Mark II version operated from 1973 until 1986. The NPL network was the first computer network to implement packet switching and NPL was the first to use high-speed links. Its original design, along with the innovations implemented in the ARPANET and the CYCLADES network, laid down the technical foundations of the modern Internet.

Origins

[edit]
NPL network packet

In 1965, Donald Davies, who was later appointed to head of the NPL Division of Computer Science, proposed a commercial national data network in the United Kingdom based on packet switching in Proposal for the Development of a National Communications Service for On-line Data Processing.[1][2] The following year, he refined his ideas in Proposal for the Development of a National Communications Service for OnLine Data Processing.[3][4] The design was the first to describe the concept of an "interface computer", today known as a router.[5]

A written version of the proposal entitled A digital communications network for computers giving rapid response at remote terminals was presented by Roger Scantlebury at the Symposium on Operating Systems Principles in 1967. The design involved transmitting signals (packets) across a network with a hierarchical structure. It was proposed that "local networks" be constructed with interface computers which had responsibility for multiplexing among a number of user systems (time-sharing computers and other users) and for communicating with "high level network". The latter would be constructed with "switching nodes" connected together with megabit rate circuits (T1 links, which run with a 1.544 Mbit/s line rate).[6][7][8][9] In Scantlebury's report following the conference, he noted "It would appear that the ideas in the NPL paper at the moment are more advanced than any proposed in the USA".[10][11][12]

Packet switching

[edit]

The first theoretical foundation of packet switching was the work of Paul Baran, at RAND, in which data was transmitted in small chunks and routed independently by a method similar to store-and-forward techniques between intermediate networking nodes.[13][14][15] Davies independently arrived at the same model in 1965 and named it packet switching.[16] He chose the term "packet" after consulting with an NPL linguist because it was capable of being translated into languages other than English without compromise.[17] Davies gave the first public presentation of packet switching on 5 August 1968.[18] In July 1968, NPL put on a demonstration of real and simulated networks at an event organised by the Real Time Club at the Royal Festival Hall in London.[19]

Davies' original ideas influenced other research around the world.[7][20][21] Larry Roberts incorporated these concepts into the design for the ARPANET.[22][23][24] The NPL network initially proposed a line speed of 768 kbit/s.[25] Influenced by this, the planned line speed for ARPANET was upgraded from 2.4 kbit/s to 50 kbit/s and a similar packet format adopted.[26][27] Louis Pouzin's CYCLADES project in France was also influenced by Davies' work.[28] These networks laid down the technical foundations of the modern Internet.

Implementation and further research

[edit]

Network development

[edit]

Beginning in late 1966,[29] Davies' tasked Derek Barber, his deputy, to establish a team to build a local-area network to serve the needs of NPL and prove the feasibility of packet switching. The team consisted of:[19][29][30][31][32][33]

The team worked through 1967 to produce design concepts for a wide-area network and a local-area network to demonstrate the technology. Construction of the local-area network began in 1968 using a Honeywell 516 node.[34][35] The NPL team liaised with Honeywell in the adaptation of the DDP516 input/output controller,[29] and, the following year, the ARPANET chose the same computer to serve as Interface Message Processors (IMPs).[36]

Elements of the first version of the network, Mark I NPL Network, became operational in early 1969 (before the ARPANET installed its first node).[7][37][38][39] The network was fully operational in January 1970.[7] The local-area NPL network followed by the wide-area ARPANET in the United States were the first two computer networks that implemented packet switching.[40][41] The network used high-speed links, the first computer network to do so.[42][30][43]

The NPL network was later interconnected with other networks, including the Post Office Experimental Packet Switched Service (EPSS) and the European Informatics Network (EIN) in 1976.[7]

In 1976, 12 computers and 75 terminal devices were attached,[44] and more were added. The network remained in operation until 1986.[34]

Protocol development

[edit]
NPL network model

The first use of the term protocol in a modern data-commutations context occurs in a memorandum entitled A Protocol for Use in the NPL Data Communications Network written by Roger Scantlebury and Keith Bartlett in April 1967.[30][45][46][47] A further publication by Bartlett in 1968 introduced the concept of an alternating bit protocol (later used by the ARPANET and the EIN)[48][49] and described the need for three levels of data transmission,[50] roughly corresponding to the lower levels of the seven-layer OSI model that emerged a decade later.

The Mark II version, which operated from 1973, used such a "layered" protocol architecture.[7][51]

The NPL team also introduced the idea of protocol verification.[30] Protocol verification was discussed in the November 1978 special edition of the Proceedings of the IEEE on packet switching.[52]

Simulation studies

[edit]

The NPL team also carried out simulation work on the performance of wide-area packet networks, studying datagrams and network congestion. This work was carried out to investigate networks of a size capable of providing data communications facilities to most of the U.K.[7][28][53][54][55]

Davies proposed an adaptive method of congestion control that he called isarithmic.[29][56][57][58][59]

Internetworking

[edit]

The NPL network was a testbed for internetworking research throughout the 1970s. Davies, Scantlebury and Barber were active members of the International Network Working Group (INWG) formed in 1972.[60][61][62] Vint Cerf and Bob Kahn acknowledged Davies and Scantlebury in their 1974 paper A Protocol for Packet Network Intercommunication, which DARPA developed into the Internet protocol suite used in the modern Internet.[63]

Barber was appointed director of the European COST 11 project and played a leading part in the European Informatics Network (EIN).[64] Scantlebury led the UK technical contribution, reporting directly to Donald Davies.[30][60][65][66] The EIN protocol helped to launch the INWG and X.25 protocols.[49][67][68] INWG proposed an international end to end protocol in 1975/6,[69] although this was not widely adopted.[70][71] Barber became the chair of INWG in 1976.[60] He proposed and implemented a mail protocol for EIN.[72]

NPL investigated the "basic dilemma" involved in internetworking; that is, a common host protocol would require restructuring existing networks if they were not designed to use the same protocol. NPL connected with the European Informatics Network by translating between two different host protocols while the NPL connection to the Post Office Experimental Packet Switched Service used a common host protocol in both networks. This work confirmed establishing a common host protocol would be more reliable and efficient.[73]

Davies and Barber published Communication networks for computers in 1973 and Computer networks and their protocols in 1979.[74][75][76] They spoke at the Data Communications Symposium in 1975 about the "battle for access standards" between datagrams and virtual circuits, with Barber saying the "lack of standard access interfaces for emerging public packet-switched communication networks is creating 'some kind of monster' for users".[77] For a long period of time, the network engineering community was polarized over the implementation of competing protocol suites, commonly known as the Protocol Wars. It was unclear which type of protocol would result in the best and most robust computer networks.[78]

Network security

[edit]

Davies' later research at NPL focused on data security for computer networks.[79]

Legacy

[edit]

The concepts of packet switching, high-speed routers, layered communication protocols, hierarchical computer networks, and the essence of the end-to-end principle that were researched and developed at the NPL became fundamental to data communication in modern computer networks including the Internet.[80][81][82][83][84]

Beyond NPL, and the designs of Paul Baran at RAND, DARPA was the most important institutional force, creating the ARPANET, the first wide-area packet-switched network, to which many other network designs at the time were compared or replicated.[85] The ARPANET's routing, flow control, software design and network control were developed independently by the IMP team working for Bolt Beranek & Newman.[86][87] The CYCLADES network designed by Louis Pouzin at the IRIA in France built on the work of Donald Davies and pioneered important improvements to the ARPANET design.[88][89]

Moreover, in the view of some, the research and development of internetworking,[90] and TCP/IP in particular (which was sponsored by DARPA), marks the true beginnings of the Internet.[36][91][92] The adoption of TCP/IP and the early governance of the Internet were also fostered by DARPA.

NPL sponsors a gallery, opened in 2009, about the "Technology of the Internet" at The National Museum of Computing at Bletchley Park.[33]

See also

[edit]

References

[edit]
  1. ^ Edmondson-Yurkanan, Chris (2007). "SIGCOMM's archaeological journey into networking's past". Communications of the ACM. 50 (5): 63–68. doi:10.1145/1230819.1230840. ISSN 0001-0782. In his first draft dated Nov. 10, 1965 [5], Davies forecast today's "killer app" for his new communication service: "The greatest traffic could only come if the public used this means for everyday purposes such as shopping... People sending enquiries and placing orders for goods of all kinds will make up a large section of the traffic... Business use of the telephone may be reduced by the growth of the kind of service we contemplate."
  2. ^ Yates, David M. (1997). Turing's Legacy: A History of Computing at the National Physical Laboratory 1945-1995. National Museum of Science and Industry. p. 130. ISBN 978-0-901805-94-2.
  3. ^ Pelkey, James (2007), "NPL Network and Donald Davies 1966 - 1971", Entrepreneurial Capitalism and Innovation: A History of Computer Communications 1968-1988, retrieved 13 April 2016
  4. ^ Davies, D. W. (1966), Proposal for a Digital Communication Network (PDF), National Physical Laboratory
  5. ^ Roberts, Dr. Lawrence G. (May 1995). "The ARPANET & Computer Networks". Archived from the original on 24 March 2016. Retrieved 13 April 2016. Then in June 1966, Davies wrote a second internal paper, "Proposal for a Digital Communication Network" In which he coined the word packet,- a small sub part of the message the user wants to send, and also introduced the concept of an "Interface computer" to sit between the user equipment and the packet network.
  6. ^ Roberts, Lawrence G. (November 1978). "The evolution of packet switching" (PDF). Proceedings of the IEEE. 66 (11): 1307–13. doi:10.1109/PROC.1978.11141. S2CID 26876676. Both Paul Baran and Donald Davies in their original papers anticipated the use of T1 trunks
  7. ^ a b c d e f g Hempstead, C.; Worthington, W., eds. (2005). Encyclopedia of 20th-Century Technology. Routledge. pp. 573–5. ISBN 9781135455514. Retrieved 15 August 2015.
  8. ^ A History of the ARPANET: The First Decade (PDF) (Report). Bolt, Beranek & Newman Inc. 1 April 1981. pp. 53 of 183 (III-11 on the printed copy). Archived from the original on 1 December 2012.
  9. ^ A Hey, G Pápay (2014). The Computing Universe: A Journey through a Revolution. Cambridge University Press. p. 201. ISBN 978-0521766456. Retrieved 16 August 2015.
  10. ^ "Oral-History:Donald Davies & Derek Barber". Retrieved 13 April 2016. the ARPA network is being implemented using existing telegraphic techniques simply because the type of network we describe does not exist. It appears that the ideas in the NPL paper at this moment are more advanced than any proposed in the USA
  11. ^ Naughton, John (2015). "8 Packet post". A Brief History of the Future: The origins of the Internet. Hachette UK. ISBN 978-1474602778. they lacked one vital ingredient. Since none of them had heard of Paul Baran they had no serious idea of how to make the system work. And it took an English outfit to tell them.
  12. ^ Barber, Derek (Spring 1993). "The Origins of Packet Switching". The Bulletin of the Computer Conservation Society (5). ISSN 0958-7403. Retrieved 6 September 2017. Roger actually convinced Larry that what he was talking about was all wrong and that the way that NPL were proposing to do it was right. I've got some notes that say that first Larry was sceptical but several of the others there sided with Roger and eventually Larry was overwhelmed by the numbers.
  13. ^ Winston, Brian (2002). Media, Technology and Society: A History: From the Telegraph to the Internet. Routledge. pp. 323–327. ISBN 1134766327.
  14. ^ Barber, Derek (Spring 1993). "The Origins of Packet Switching". The Bulletin of the Computer Conservation Society (5). ISSN 0958-7403. Retrieved 6 September 2017. There had been a paper written by [Paul Baran] from the Rand Corporation which, in a sense, foreshadowed packet switching in a way for speech networks and voice networks
  15. ^ "On packet switching". Net History. Retrieved 8 January 2024. [Scantlebury said] Clearly Donald and Paul Baran had independently come to a similar idea albeit for different purposes. Paul for a survivable voice/telex network, ours for a high-speed computer network.
  16. ^ Scantlebury, Roger (25 June 2013). "Internet pioneers airbrushed from history". The Guardian. Retrieved 1 August 2015.
  17. ^ Harris, Trevor, University of Wales (2009). Pasadeos, Yorgo (ed.). "Who is the Father of the Internet? The Case for Donald Davies". Variety in Mass Communication Research. ATINER: 123–134. ISBN 978-960-6672-46-0. Archived from the original on 2 May 2022.((cite journal)): CS1 maint: multiple names: authors list (link)
  18. ^ "The accelerator of the modern age". BBC News. 5 August 2008. Retrieved 19 May 2009.
  19. ^ a b Barber, Derek (Spring 1993). "The Origins of Packet Switching". The Bulletin of the Computer Conservation Society (5). ISSN 0958-7403. Retrieved 6 September 2017.
  20. ^ Roberts, Dr. Lawrence G. (November 1978). "The Evolution of Packet Switching" (PDF). IEEE Invited Paper. Retrieved 10 September 2017. In nearly all respects, Davies' original proposal, developed in late 1965, was similar to the actual networks being built today.
  21. ^ Needham, R. M. (2002). "Donald Watts Davies, C.B.E. 7 June 1924 – 28 May 2000". Biographical Memoirs of Fellows of the Royal Society. 48: 87–96. doi:10.1098/rsbm.2002.0006. S2CID 72835589. The 1967 Gatlinburg paper was influential on the development of ARPAnet, which might otherwise have been built with less extensible technology. ... Davies was invited to Japan to lecture on packet switching.
  22. ^ "Computer Pioneers - Donald W. Davies". IEEE Computer Society. Retrieved 20 February 2020. In 1965, Davies pioneered new concepts for computer communications in a form to which he gave the name "packet switching." ... The design of the ARPA network (ArpaNet) was entirely changed to adopt this technique.; "A Flaw In The Design". The Washington Post. 30 May 2015. The Internet was born of a big idea: Messages could be chopped into chunks, sent through a network in a series of transmissions, then reassembled by destination computers quickly and efficiently. Historians credit seminal insights to Welsh scientist Donald W. Davies and American engineer Paul Baran. ... The most important institutional force ... was the Pentagon's Advanced Research Projects Agency (ARPA) ... as ARPA began work on a groundbreaking computer network, the agency recruited scientists affiliated with the nation's top universities.
  23. ^ Gillies, J.; Cailliau, R. (2000). How the Web was Born: The Story of the World Wide Web. Oxford University Press. pp. 23–26. ISBN 0192862073.
  24. ^ F.E. Froehlich, A. Kent (1990). The Froehlich/Kent Encyclopedia of Telecommunications: Volume 1 - Access Charges in the U.S.A. to Basics of Digital Communications. CRC Press. p. 344. ISBN 0824729005. Although there was considerable technical interchange between the NPL group and those who designed and implemented the ARPANET, the NPL Data Network effort appears to have had little fundamental impact on the design of ARPANET. Such major aspects of the NPL Data Network design as the standard network interface, the routing algorithm, and the software structure of the switching node were largely ignored by the ARPANET designers. There is no doubt, however, that in many less fundamental ways the NPL Data Network had and effect on the design and evolution of the ARPANET.
  25. ^ Kaminow, Ivan; Li, Tingye (22 May 2002). Optical Fiber Telecommunications IV-B: Systems and Impairments. Elsevier. p. 29. ISBN 978-0-08-051319-5.
  26. ^ Abbate, Janet (2000). Inventing the Internet. MIT Press. p. 38. ISBN 0262261332.
  27. ^ Roberts, Dr. Lawrence G. (May 1995). "The ARPANET & Computer Networks". Archived from the original on 14 February 2019. Retrieved 16 June 2019.
  28. ^ a b Pelkey, James. "8.3 CYCLADES Network and Louis Pouzin 1971–1972". Entrepreneurial Capitalism and Innovation: A History of Computer Communications 1968–1988.
  29. ^ a b c d Wilkinson, Peter (Summer 2020). "Packet Switching and the NPL Network". RESURRECTION: The Journal of the Computer Conservation Society (90). ISSN 0958-7403.
  30. ^ a b c d e Campbell-Kelly, Martin (1987). "Data Communications at the National Physical Laboratory (1965-1975)". Annals of the History of Computing. 9 (3/4): 221–247. doi:10.1109/MAHC.1987.10023. S2CID 8172150. the first occurrence in print of the term protocol in a data communications context ... the next hardware tasks were the detailed design of the interface between the terminal devices and the switching computer, and the arrangements to secure reliable transmission of packets of data over the high-speed lines
  31. ^ "Computer pioneer interactive family tree". 2 February 2010. Retrieved 5 June 2024.
  32. ^ technicshistory (2 June 2019). "ARPANET, Part 2: The Packet". Creatures of Thought. Retrieved 21 June 2024.
  33. ^ a b "Technology of the Internet". The National Museum of Computing. Retrieved 3 October 2017.
  34. ^ a b Campbell-Kelly, Martin (1987). "Data Communications at the National Physical Laboratory (1965-1975)". Annals of the History of Computing. 9 (3/4): 221–247. doi:10.1109/MAHC.1987.10023. S2CID 8172150.
  35. ^ Scantlebury, R. A.; Wilkinson, P.T. (1974). "The National Physical Laboratory Data Communications Network". Proceedings of the 2nd ICCC 74. pp. 223–228.
  36. ^ a b Hafner, Katie; Lyon, Matthew (1996). Where wizards stay up late: the origins of the Internet. Internet Archive. New York : Simon & Schuster. p. 263. ISBN 978-0-684-81201-4.
  37. ^ Rayner, David; Barber, Derek; Scantlebury, Roger; Wilkinson, Peter (2001). NPL, Packet Switching and the Internet. Symposium of the Institution of Analysts & Programmers 2001. Archived from the original on 7 August 2003. Retrieved 13 June 2024. The system first went 'live' early in 1969
  38. ^ Haughney Dare-Bryan, Christine (22 June 2023). Computer Freaks (Podcast). Chapter Two: In the Air. Inc. Magazine. 35:55 minutes in. Leonard Kleinrock: Donald Davies ... did make a single node packet switch before ARPA did
  39. ^ John S, Quarterman; Josiah C, Hoskins (1986). "Notable computer networks". Communications of the ACM. 29 (10): 932–971. doi:10.1145/6617.6618. S2CID 25341056. The first packet-switching network was implemented at the National Physical Laboratories in the United Kingdom. It was quickly followed by the ARPANET in 1969.
  40. ^ "Donald Davies". internethalloffame.org; "Donald Davies". thocp.net. Archived from the original on 5 November 2020. Retrieved 9 April 2016.
  41. ^ Roberts, Lawrence G. (November 1978). "The Evolution of Packet Switching". Archived from the original on 24 March 2016. Retrieved 9 April 2016.
  42. ^ "Alan Turing and the Ace computer". 5 February 2010. Retrieved 5 June 2024. The NPL network ran at multi-megabit speeds in the late 1960s, faster than any network at the time.
  43. ^ Guardian Staff (25 June 2013). "Internet pioneers airbrushed from history". The Guardian. ISSN 0261-3077. Retrieved 31 July 2020. This was the first digital local network in the world to use packet switching and high-speed links.
  44. ^ "The National Physical Laboratory Data Communications Netowrk". 1974. Retrieved 5 September 2017.
  45. ^ Naughton, John (2015). A Brief History of the Future. Orion. ISBN 978-1-4746-0277-8.
  46. ^ Kleinrock, L. (1978). "Principles and lessons in packet communications". Proceedings of the IEEE. 66 (11): 1320–1329. doi:10.1109/PROC.1978.11143. ISSN 0018-9219. Paul Baran ... focused on the routing procedures and on the survivability of distributed communication systems in a hostile environment, but did not concentrate on the need for resource sharing in its form as we now understand it; indeed, the concept of a software switch was not present in his work.
  47. ^ Pelkey, James L. "6.1 The Communications Subnet: BBN 1969". Entrepreneurial Capitalism and Innovation: A History of Computer Communications 1968–1988. As Kahn recalls: ... Paul Baran's contributions ... If you look at what he wrote, he was talking about switches that were low-cost electronics. The idea of putting powerful computers in these locations hadn't quite occurred to him as being cost effective. So the idea of computer switches was missing. The whole notion of protocols didn't exist at that time. And the idea of computer-to-computer communications was really a secondary concern.
  48. ^ "ARPANET is now 50 years old | Inria". www.inria.fr. 22 October 2019. Retrieved 10 November 2022.
  49. ^ a b Davies, Donald Watts (1979). Computer networks and their protocols. John Wiley & Sons. pp. 464. ISBN 9780471997504.
  50. ^ K. A. Bartlett et al., “Transmission control in a Local Data Network". Info. Processing 68, Proc. IFIP Cong., North Holland 1968.
  51. ^ A Hey, G Pápay (8 December 2014). The Computing Universe: A Journey through a Revolution. Cambridge University Press. ISBN 978-0521766456. Retrieved 16 August 2015.(source: Roger Scantlebury - p.201)
  52. ^ Kahn, R.E.; Uncapher, K.W.; van Trees, H.L. (1978). "Scanning the issue". Proceedings of the IEEE. 66 (11): 1303–1306. doi:10.1109/PROC.1978.11140. ISSN 0018-9219.
  53. ^ Clarke, Peter (1982). Packet and circuit-switched data networks (PDF) (PhD thesis). Department of Electrical Engineering, Imperial College of Science and Technology, University of London. "As well as the packet switched network actually built at NPL for communication between their local computing facilities, some simulation experiments have been performed on larger networks. A summary of this work is reported in [69]. The work was carried out to investigate networks of a size capable of providing data communications facilities to most of the U.K. ... Experiments were then carried out using a method of flow control devised by Davies [70] called 'isarithmic' flow control. ... The simulation work carried out at NPL has, in many respects, been more realistic than most of the ARPA network theoretical studies."
  54. ^ Wilkinson, Peter (2001). NPL Development of Packet Switching. Symposium of the Institution of Analysts & Programmers 2001. Archived from the original on 7 August 2003. Retrieved 13 June 2024. The feasibility studies continued with an attempt to apply queuing theory to study overall network performance. This proved to be intractable so we quickly turned to simulation.
  55. ^ Campbell-Kelly, Martin (Autumn 2008). "Pioneer Profiles: Donald Davies". Computer Resurrection (44). ISSN 0958-7403.
  56. ^ "Routing and Congestion Control in Datagram Networks" (PDF).
  57. ^ "ADVANCES IN OPTIMAL ROUTING THROUGH COMPUTER NETWORKS" (PDF).
  58. ^ "Nonsynchronous Communication, IMPs, and Optimization". manifold.umn.edu. Retrieved 16 June 2024.
  59. ^ "Internet Daemons: Network Optimization & Communication Rights".
  60. ^ a b c McKenzie, Alexander (2011). "INWG and the Conception of the Internet: An Eyewitness Account". IEEE Annals of the History of Computing. 33 (1): 66–71. doi:10.1109/MAHC.2011.9. ISSN 1934-1547. S2CID 206443072.
  61. ^ "Smithsonian Oral and Video Histories: Vinton Cerf". National Museum of American History. Smithsonian Institution. 24 April 1990. Retrieved 23 September 2019. Roger Scantlebury was one of the major players. And Donald Davies who ran, at least he was superintendent of the information systems division or something like that. I absolutely had a lot of interaction with NPL at the time. They in fact came to the ICCC 72 and they had been coming to previous meetings of what is now called Datacomm. Its first incarnation was a long title having to do with the analysis and optimization of computer communication networks, or something like that. This started in late 1969, I think, was when the first meeting happened in Pine Hill, Georgia. I didn't go to that one, but I went to the next one that was at Stanford, I think. That's where I met Scantlebury, I believe, for the first time. Then I had a lot more interaction with him. I would come to the UK fairly regularly, partly for IFIP or INWG reasons
  62. ^ Davies, Shanks, Heart, Barker, Despres, Detwiler and Riml, "Report of Subgroup 1 on Communication System", INWG Note No. 1.
  63. ^ Cerf, V.; Kahn, R. (1974). "A Protocol for Packet Network Intercommunication" (PDF). IEEE Transactions on Communications. 22 (5): 637–648. CiteSeerX 10.1.1.113.7384. doi:10.1109/TCOM.1974.1092259. ISSN 1558-0857. The authors wish to thank a number of colleagues for helpful comments during early discussions of international network protocols, especially R. Metcalfe, R. Scantlebury, D. Walden, and H. Zimmerman; D. Davies and L. Pouzin who constructively commented on the fragmentation and accounting issues; and S. Crocker who commented on the creation and destruction of associations.
  64. ^ Barber, D L. (1975). "Cost project 11". ACM SIGCOMM Computer Communication Review. 5 (3): 12–15. doi:10.1145/1015667.1015669. S2CID 28994436.
  65. ^ Scantlebury, Roger (1986). "X.25 - past, present and future". In Stokes, A. V. (ed.). Communications Standards: State of the Art Report. Pergamon. pp. 203–216. ISBN 978-1-4831-6093-1.
  66. ^ "EIN (European Informatics Network)". Computer History Museum. Retrieved 5 February 2020.
  67. ^ Hardy, Daniel; Malleus, Guy (2002). Networks: Internet, Telephony, Multimedia: Convergences and Complementarities. Springer Science & Business Media. p. 505. ISBN 978-3-540-00559-9.
  68. ^ Derek Barber. "The Origins of Packet Switching". Computer Resurrection Issue 5. Retrieved 5 June 2024. I actually set up the first meeting between John Wedlake of the British Post Office and [Rémi Després] of the French PTT which led to X25. There was a problem about virtual calls in EIN, so I called this meeting and that actually did in the end lead to X25.
  69. ^ Cerf, V.; McKenzie, A; Scantlebury, R; Zimmermann, H (1976). "Proposal for an international end to end protocol". ACM SIGCOMM Computer Communication Review. 6: 63–89. doi:10.1145/1015828.1015832. S2CID 36954091.
  70. ^ Scantlebury, Roger (25 June 2013). "Internet pioneers airbrushed from history". The Guardian. Retrieved 1 August 2015.
  71. ^ Scantlebury, Roger (8 January 2010). "How we nearly invented the internet in the UK". New Scientist. Retrieved 7 February 2020.
  72. ^ Barber, D. L. A. and Laws, J. (February 1979). “A basic mail scheme for EIN,” International Network Working Group (INWG), Note no. 192.
  73. ^ Abbate, Janet (2000). Inventing the Internet. MIT Press. p. 125. ISBN 978-0-262-51115-5.
  74. ^ "Donald Davies". thocp.net. Archived from the original on 5 November 2020. Retrieved 29 August 2012; "Donald Davies". internethalloffame.org.
  75. ^ Davies, Donald Watts; Barber, Derek L. A. (1973), Communication networks for computers, Computing and Information Processing, John Wiley & Sons, ISBN 9780471198741
  76. ^ Davies, Donald Watts (1979). Computer networks and their protocols. Internet Archive. Chichester, [Eng.]; New York : Wiley. pp. 456–477. ISBN 9780471997504.
  77. ^ Frank, Ronald A. (22 October 1975). "Battle for Access Standards Has Two Sides". Computerworld. IDG Enterprise: 17–18.
  78. ^ Davies, Howard; Bressan, Beatrice (26 April 2010). A History of International Research Networking: The People who Made it Happen. John Wiley & Sons. ISBN 978-3-527-32710-2.
  79. ^ Davies, D. W.; Price, W. L. (1984), Security for computer networks: an introduction to data security in teleprocessing and electronic funds transfer, New York: John Wiley & Sons, ISBN 978-0471921370
  80. ^ Yates, David M. (1997). Turing's Legacy: A History of Computing at the National Physical Laboratory 1945-1995. National Museum of Science and Industry. pp. 132–4. ISBN 978-0-901805-94-2. Davies's invention of packet switching and design of computer communication networks ... were a cornerstone of the development which led to the Internet
  81. ^ Abbate 1999, p. 3 "The manager of the ARPANET project, Lawrence Roberts, assembled a large team of computer scientists ... and he drew on the ideas of network experimenters in the United States and the United Kingdom. Cerf and Kahn also enlisted the help of computer scientists from England, France and the United States"
  82. ^ "Alan Turing and the Ace computer". BBC. 5 February 2010. Retrieved 13 February 2024. Does that mean Britain invented the internet? "Yes and no," said Mr Scantlebury. "Certainly the underlying technology of the internet, which is packet switching, we did invent."
  83. ^ "How the Brits invented packet switching and made the internet possible". www.computerweekly.com. Archived from the original on 31 August 2012. Retrieved 13 February 2024.
  84. ^ "The British invented much of the Internet". ZDNET. Retrieved 13 February 2024.
  85. ^ "A Flaw in the Design". The Washington Post. 30 May 2015. Archived from the original on 8 November 2020. Retrieved 20 February 2020. The Internet was born of a big idea: Messages could be chopped into chunks, sent through a network in a series of transmissions, then reassembled by destination computers quickly and efficiently. Historians credit seminal insights to Welsh scientist Donald W. Davies and American engineer Paul Baran. ... The most important institutional force ... was the Pentagon's Advanced Research Projects Agency (ARPA) ... as ARPA began work on a groundbreaking computer network, the agency recruited scientists affiliated with the nation's top universities.
  86. ^ Roberts, Lawrence G. (November 1978). "The evolution of packet switching" (PDF). Proceedings of the IEEE. 66 (11): 1307–13. doi:10.1109/PROC.1978.11141. S2CID 26876676. Significant aspects of the network's internal operation, such as routing, flow control, software design, and network control were developed by a BBN team consisting of Frank Heart, Robert Kahn, Severo Omstein, William Crowther, and David Walden
  87. ^ F.E. Froehlich, A. Kent (1990). The Froehlich/Kent Encyclopedia of Telecommunications: Volume 1 - Access Charges in the U.S.A. to Basics of Digital Communications. CRC Press. p. 344. ISBN 0824729005. Although there was considerable technical interchange between the NPL group and those who designed and implemented the ARPANET, the NPL Data Network effort appears to have had little fundamental impact on the design of ARPANET. Such major aspects of the NPL Data Network design as the standard network interface, the routing algorithm, and the software structure of the switching node were largely ignored by the ARPANET designers. There is no doubt, however, that in many less fundamental ways the NPL Data Network had and effect on the design and evolution of the ARPANET.
  88. ^ Russell, Andrew L.; Schafer, Valérie (2014). "In the Shadow of ARPANET and Internet: Louis Pouzin and the Cyclades Network in the 1970s". Technology and Culture. 55 (4): 893–894. ISSN 0040-165X. JSTOR 24468474.
  89. ^ Bennett, Richard (September 2009). "Designed for Change: End-to-End Arguments, Internet Innovation, and the Net Neutrality Debate" (PDF). Information Technology and Innovation Foundation. pp. 7, 11. Retrieved 11 September 2017.
  90. ^ "The Computer History Museum, SRI International, and BBN Celebrate the 40th Anniversary of First ARPANET Transmission, Precursor to Today's Internet". SRI International. 27 October 2009. Archived from the original on 29 March 2019. Retrieved 25 September 2017. But the ARPANET itself had now become an island, with no links to the other networks that had sprung up. By the early 1970s, researchers in France, the UK, and the U.S. began developing ways of connecting networks to each other, a process known as internetworking.
  91. ^ "BT ad gets into a muddle about the internet's origins". BBC. 15 February 2016. Retrieved 25 September 2017. Although University College London subsequently helped test the networking protocols that gave rise to what we now recognise as the internet, much of the original work on them had been carried out at Stanford. "While Donald Davies and his team at the National Physical Laboratory can lay claim to having developed packet-switching that enabled the technological infrastructure of the internet, Vint Cerf and a number of Americans were the driving forces behind the Arpanet that became the internet," commented Prof Martin Campbell-Kelly, a trustee at The National Museum of Computing.
  92. ^ by Vinton Cerf, as told to Bernard Aboba (1993). "How the Internet Came to Be". Archived from the original on 26 September 2017. Retrieved 25 September 2017. We began doing concurrent implementations at Stanford, BBN, and University College London. So effort at developing the Internet protocols was international from the beginning.

Further reading

[edit]

Primary sources

[edit]
[edit]