M1 bazooka
TypeRecoilless rocket anti-tank weapon
Place of originUnited States
Service history
In service1942–present
Used bySee § Users
Production history
DesignerEdward Uhl[3]
ProducedJune 1942 – May 1945 (2.36 inch bazookas)
No. built
  • 112,790 (M1)[4]
  • 59,932 (M1A1)[5]
  • 6,087 (M9)[6]
  • 277,819 (M9A1)[6]
  • unknown (M20)
  • 1,500 (M25)[7]

A bazooka (/bəˈzkə/)[8] is a man-portable recoilless anti-tank rocket launcher weapon, widely deployed by the United States Army, especially during World War II. Also referred to as the "stovepipe", the innovative bazooka was among the first generation of rocket-propelled anti-tank weapons used in infantry combat. Featuring a solid-propellant rocket for propulsion, it allowed for high-explosive anti-tank (HEAT) shaped charge warheads to be delivered against armored vehicles, machine gun nests, and fortified bunkers at ranges beyond that of a standard thrown grenade or mine. The universally applied nickname arose from the M1 variant's vague resemblance to the musical instrument called a bazooka invented and popularized by 1930s American comedian Bob Burns.

During World War II, the German armed forces captured several bazookas in early North African[9] and Eastern Front encounters and soon reverse engineered their own version,[9] increasing the warhead diameter to 8.8 cm (among other minor changes) and widely issuing it as the Raketenpanzerbüchse "Panzerschreck" ("rocket anti-armor rifle 'tank terror'").[9] Near the end of the war, the Japanese developed a similar weapon, the Type 4 70 mm AT rocket launcher, which featured a rocket-propelled grenade of a different design.[10]

The term "bazooka" still sees informal use as a generic term[11] referring to any shoulder fired ground-to-ground/ground-to-air missile weapon (mainly rocket-propelled grenade launchers or recoilless rifles), and as an expression that heavy measures are being taken.[11]


The name "bazooka" comes from an extension of the word "bazoo", which is slang for "mouth" or "boastful talk", and which ultimately probably stems from the Dutch bazuin (buisine, a medieval trumpet).[12] The word "bazooka" appears in the 1909 novel The Swoop, or how Clarence Saved England by P. G. Wodehouse, describing the character Grand Duke Vodkakoff and a musical instrument used in music halls:[citation needed]

I shouldn't 'arf wonder, from the look of him, if he wasn't the 'aughty kind of a feller who'd cleave you to the bazooka for tuppence with his bloomin' falchion.[13]

During World War II, "bazooka" became the universally applied nickname of the new American anti-tank weapon, due to its vague resemblance to the musical instrument invented and popularized by 1930s American comedian Bob Burns.[14][15]

Shortly after the first prototype launcher and rockets had been tested by firing into the Potomac River, U.S. Army colonel Leslie Skinner, and lieutenant colonel Edward Uhl took the new system to a competitive trial of various types of spigot mortar (at that time seen as the most promising way to deliver a shaped charge), which was held at the Aberdeen Proving Ground in May 1942. The new rocket launcher scored several hits on a moving tank while the five different mortars achieved none; this was a considerable achievement since the launcher's sights had been fabricated that morning from a wire coat hanger bent with a broken nail.[16] The trial was being watched by various senior officers, among them the chief of research and engineering in the Ordnance Department, Major General Gladeon M. Barnes. Barnes was delighted by the performance of the system and fired it himself, but commented: "It sure looks like Bob Burns' bazooka".[17][18]


Design and development

The development of the bazooka involved the development of two specific lines of technology: the rocket-powered weapon and the shaped charge warhead. It was also designed for easy maneuverability and access.

World War I

This rocket-powered weapon was the brainchild of Robert H. Goddard as a side project (under Army contract during World War I) of his work on rocket propulsion. Goddard, during his tenure at Clark University, and while working at Worcester Polytechnic Institute's magnetic lab and Mount Wilson Observatory (for security reasons), designed a tube-fired rocket for military use. He and his co-worker Clarence N. Hickman successfully demonstrated his rocket to the US Army Signal Corps at Aberdeen Proving Ground, Maryland, on November 6, 1918, but as the Compiègne Armistice was signed only five days later, development was discontinued. The project was also interrupted by Goddard's serious bout with tuberculosis. He continued to be a part-time consultant to the US government at Indian Head, Maryland until 1923, but turned his focus to other projects involving rocket propulsion. Hickman completed the development of the bazooka after becoming head of the National Defense Research Committee in the 1940s, where he guided rocket development for the war effort.[19]

Shaped charge development

Shaped charge technology was developed in the US into a shaped charge anti-tank grenade for use by infantry, effective at defeating up to 60 mm (2.4 in) of vehicle armor. The grenade was standardized as the M10. However, the M10 grenade weighed 3.5 lb (1.6 kg), proving difficult to throw by hand and too heavy to be launched as a rifle grenade. The only practical way to use the weapon was for an infantryman to place it directly on the tank, a dangerous and unlikely means of delivery in most combat situations. A smaller, less powerful, version of the M10, the M9, was then developed, which could be fired from a rifle. This resulted in the creation of a series of rifle grenade launchers, the M1 (Springfield M1903), the M2 (Enfield M1917), the M7 (M1 Garand), and the M8 (M1 carbine). However, a truly capable anti-tank weapon had yet to be found, and following the lead of other countries at the time, the U.S. Army prepared to evaluate competing designs for a more effective man-portable anti-tank weapon.[20][21]

The combination of rocket motor and shaped charge warhead led to the Army's development of light antitank weapons.[22]

Rocket-borne shaped charge weapons development

A prototype of the world's first "tube-type rocket-propelled grenade launcher", the grip part of "ORIGINAL BAZOOKA" is marked "MAY 1942" and is signed by the development team including Hickman, Skinner, and Yule

In 1942, U.S. Army Colonel Leslie Skinner received the M10 shaped-charge grenade which was capable of stopping German tanks. He gave Lieutenant Edward Uhl the task of creating a delivery system for the grenade. Uhl created a small rocket, but needed to protect the operator from the rocket motor's exhaust. According to Uhl:

I was walking by this scrap pile, and there was a tube that... happened to be the same size as the grenade that we were turning into a rocket. I said, That's the answer! Put the tube on a soldier's shoulder with the rocket inside, and away it goes.[3]

An M1 bazooka with M6A1 and M6A3 rockets

At the launcher's first firing test, Uhl wore a welding helmet, but discovered that there was not enough exhaust from the rocket to require protective equipment. The prototype launcher was demonstrated in May 1942 at a competitive trial of various types of spigot mortar at Aberdeen Proving Ground. On the morning of the trial Skinner and Uhl realised that the launcher had no sights, so they improvised some from a wire coathanger; despite this, it was the only weapon in the trial to be able to hit a moving tank. This led to the launcher being demonstrated to General George C. Marshall, the Chief of Staff of the United States Army, who ordered 5,000 units on the spot.[23] By late 1942, the improved Rocket Launcher, M1A1 was introduced. The forward hand grip was deleted, and the design simplified. The production M1A1 was 55 inches (1.37 m) long and weighed 12.75 pounds (5.8 kg).

The ammunition for the original M1 launcher was the M6 ("Trials" code: T1), which was notoriously unreliable. The M6 was improved and designated M6A1, and the new ammunition was issued with the improved M1A1 launcher. After the M6, several alternative warheads were introduced. Many older M1 launchers were modified to M1A1 standards in July and August 1943. Batches of M6 rockets designated M6A2 were overhauled with the latest ignition systems and had been modified to be able to be fired from the upgraded M1 launchers.[24] The M6A3 rocket featured a blunt, rounded nose to lessen the chances of it ricocheting off angled armor. The M6A3 was meant to be fired from the M9, and later M9A1, launchers. Late in World War II, the M6A4 and M6A5 rockets with improved fuses were developed. These rockets arrived too late to see service during the war, but were used post-war.

The 2.36 inch (60 mm) smoke rocket M10 and its improved subvariants (M10A1, M10A2, M10A4) used the rocket motor and fin assembly of the M6A1, but replaced the anti-tank warhead with a white phosphorus (WP) smoke head. WP smoke not only acts as a visibility screen, but its burning particles can cause severe injuries to skin. The M10 was therefore used to mark targets, to blind enemy gunners or vehicle drivers, or to drive troops out of bunkers and dugouts.[25] The 2.36-inch incendiary rocket T31 was an M10 variant with an incendiary warhead designed to ignite fires in enemy-held structures and unarmored vehicles, or to destroy combustible supplies, ammunition, and materiel; it was not often utilized.

The original M1 and M1A1 rocket launchers were equipped with simple fixed sights and used launch tubes without reinforcements. During the war, the M1A1 received a number of running modifications. The battery specification was changed to a larger, standard battery cell size, resulting in complaints of batteries getting stuck in the wood shoulder rest (the compartment was later reamed out to accommodate the larger cells).[26] The M1 and M1A1 used a rear iron sight and a front rectangular "ladder" sight positioned at the muzzle. The vertical sides of the ladder sight were inscribed with graduations of 100, 200, 300, and 400 yards, with the user elevating the bazooka so the rear sight lined up with the selected "rung" on the front sight. On the M9, the ladder sight was replaced by the General Electric T43 aperture sight. Ranging was accomplished by looking through the rear sight's peep hole while rotating the assembly (which had graduations of 100, 200, and 300 yards) so it lined up with the blade positioned at the muzzle. In September 1944, during the production of the M9A1, the T43 sight was replaced by the Polaroid T90 optical reflector sight, which used an etched reticle for aiming. The T43 and T90 sights were interchangeable.[24] Various types of blast deflectors were tried, and an additional strap iron shoulder brace was fitted to the M9 launcher.

The bazooka required special care when used in tropical or arctic climates or in severe dust or sand conditions. Rockets were not to be fired at temperatures below 0 °F or above 120 °F (−18 °C to +49 °C).[27]

Field experience-induced changes

In 1943, field reports of rockets sticking and prematurely detonating in M1A1 launch tubes were received by Army Ordnance at Ogden Arsenal and other production facilities. At the US Army's Aberdeen Proving Grounds, various metal collars and wire wrapping were used on the sheet metal launch tube in an effort to reinforce it. However, reports of premature detonation continued until the development of bore slug test gauges to ensure that the rocket did not catch inside the launch tube.[28]

The original M6 and M6A1 rockets used in the M1 and M1A1 launchers had a pointed nose, which was found to cause deflection from the target at low impact angles. In late 1943, another 2.36-in rocket type was adopted, the M6A3, for use with the newly standardized M9 rocket launcher.[20] The M6A3 was 19.4 inches (493 mm) long, and weighed 3.38 lb (1.53 kg). It had a blunted, more round nose to improve target effect at low angles, and a new circular fin assembly to improve flight stability. The M6A3 was capable of penetrating 3.5–4 inches (89–102 mm) of armor plate.

Battery problems in the early bazookas eventually resulted in replacement of the battery-powered ignition system with a magneto sparker system operated through the trigger. A trigger safety was incorporated into the design that isolated the magneto, preventing misfires that could occur when the trigger was released and the stored charge prematurely fired the rocket. The final major change was the division of the launch tube into two discrete sections, with bayonet-joint attachments. This was done to make the weapon more convenient to carry, particularly for use by airborne forces. The final two-piece launcher was standardized as the M9A1. In September 1944, the fragile folding aperture sight was replaced by a Polaroid optical reflector sight.[24] However, the long list of incorporated modifications increased the launcher's tube length to 61 inches (1.55 m), with an overall empty weight of 14.3 lb (6.5 kg). From its original conception as a relatively light, handy, and disposable weapon, the final M9A1 launcher had become a heavy, clumsy, and relatively complex piece of equipment.[29][dubious ]

In October 1944, after receiving reports of inadequate combat effect of the M1A1 and M9 launchers and their M6A1 rockets, and after examining captured examples of the German 8.8 cm RPzB 43 and RPzB 54 Panzerschreck, the U.S. Ordnance Corps began development on a new, more powerful anti-tank rocket launcher, the 3.5-inch (90 mm) M20. However, the weapon's design was not completed until after the war and saw no action against an enemy until the Korean War.[30]

In 1945, the U.S. Army's Chemical Warfare Service standardized improved chemical warfare rockets intended for the new M9 and M9A1 launchers, the Army adopting the M26 gas rocket, a cyanogen chloride (CK)-filled warhead for the 2.36-in rocket launcher.[31] CK, a deadly blood agent, was capable of penetrating the protective filter barriers in some gas masks,[32] and was seen as an effective agent against Japanese forces (particularly those hiding in caves or bunkers), whose gas masks lacked the impregnants that would provide protection against the chemical reaction of CK.[31][33][34] While stockpiled in US inventory, the CK rocket was never deployed or issued to combat personnel.[31]

Aviation use

Following Operation Overlord in 1944, the military version of the slow-flying Piper J-3 Cub high-wing civilian monoplane, the L-4 Grasshopper, began to be used in a light anti-armor role by a few U.S. Army artillery spotter units over France; these aircraft were field-outfitted with either two or four bazookas attached to the lift struts,[35] against German armored fighting vehicles. Upon arriving in France in 1944, US Army major, Charles Carpenter, an Army aviator flying liaison and artillery-spotting lightplanes like the military version of the Piper J-3 Cub, the L-4 Grasshopper, was issued a new L-4H version during the concluding stages of "Overlord", taking this "light attack" role against German armor by himself. With a 150-pound pilot and no radio aboard, the L-4H had a combined cargo and passenger weight capacity of approximately 232 pounds.[36][37] This margin allowed him to eventually mount a total of six bazookas, three per side on the lift struts as other L-4s had done.[35][38]

Within a few weeks, Carpenter was credited with knocking out a German armored car and four tanks. Carpenter's plane was known as "Rosie the Rocketer", and his exploits were soon featured in many press accounts, including Stars and Stripes, the Associated Press, Popular Science, The New York Sun, and Liberty magazine. Carpenter once told a reporter that his idea of fighting a war was to "attack, attack and then attack again".[39] During the critical late-September Battle of Arracourt, Carpenter managed to achieve disabling hits on several German armored cars and two Panther tanks, along with killing or wounding a dozen or more enemy soldiers.[37][40] [dubious ]

In the opening months of the Korean War, in August 1950, a joint US Navy and Marine Corps test used a newly acquired Bell HTL-4 helicopter to test if a bazooka could be fired from a helicopter in flight. One of the larger, 3.5 inch, models of the Bazooka was chosen, and was mounted ahead and to the right of the helicopter to allow the door to remain clear. The bazooka was successfully tested, although it was discovered that it would require shielding for the engine compartment, which was exposed in the model 47 and other early helicopters. The helicopter itself belonged to HMX-1, a Marine experimental helicopter squadron.[41]

Operational use

World War II

American soldier with M1A1 bazooka on August 23, 1944, near Fontainebleau, France

In September 1942, a consignment of 600 M1 bazookas was shipped to Egypt for use by the British Army in the Western Desert campaign. In a demonstration to British commanders, a bazooka penetrated the frontal armor of a captured Panzer III; however it was decided that the desert terrain lacked the concealment required for such a short range weapon and it was not deployed in that theater.[42] In November 1942 during Operation Torch, early production versions of the M1 launcher and M6 rocket were hastily supplied to some of the U.S. invasion forces during the landings in North Africa. On the night before the landings, Gen. Dwight D. Eisenhower was shocked to discover from a subordinate that none of his troops had received any instruction in the use of the bazooka.[43]

Initially supplied with the highly unreliable M6 rocket and without training for its operators, the M1 did not play a significant armed role in combat in the North African fighting,[30] but did provide a German intelligence coup[9] when some were captured by the Germans in early encounters with inexperienced U.S. troops. A U.S. general visiting the Tunisian front in 1943 after the close of combat operations could not find any soldiers who could report that the weapon had actually stopped an enemy tank.[30] Further issue of the bazooka was suspended in May 1943.

A U.S. soldier fires an M9 bazooka at a German machine gun nest, Lucca 1944

During the Allied invasion of Sicily, small numbers of the M1A1 bazooka (using an improved rocket, the M6A1) were used in combat by U.S. forces. The M1A1 accounted for four medium German tanks and a heavy Tiger I, with the latter being knocked out by an improbable hit through the driver's vision slot.[30]

When the existence of the bazooka was revealed to the American public, official press releases for the first two years stated that it "packed the wallop of a 155 mm cannon"—a great exaggeration.[44]

In late 1942, numbers of early-production American M1 bazookas were captured by German troops from Red Army forces who had been given quantities of the bazooka under lend-lease. There were also examples captured during the Operation Torch invasions in the North African Campaign.[9] The Germans promptly developed their own version of the weapon called the Panzerschreck, increasing the diameter of the warhead from 60 mm to 88 mm (2.4 to 3.5 in), which as a result, gave it significantly greater armor penetration. During U.S. trials of the M1, calls for a larger-diameter warhead had also been raised by some ordnance officers but were rejected. Later in the war, after participating in an armor penetration test involving a German Panther tank using both the Raketenpanzerbüchse, or RPzB 54 Panzerschreck and the U.S. M9 bazooka, Corporal Donald E. Lewis of the U.S. Army informed his superiors that the Panzerschreck was "far superior to the American bazooka": 'I was so favorably impressed [by the Panzerschreck] I was ready to take after the Krauts with their own weapon.'[45]

The M1 bazooka fared much better on the rare occasions when it could be used against the much thinner armor typically fitted to the lower sides, undersides, and tops of enemy tanks. To hit the bottom of an enemy tank, the bazooka operator had to wait until the tank was surmounting a steep hill or other obstruction, while hitting the top armor usually necessitated firing the rocket from the upper story of a building or a similar, elevated, position. Even the heavy King Tiger tank only possessed hull and turret top armor of 44 mm (1+34 in) thickness at best, able to be pierced by the bazooka's shaped-charge rocket. During the 1944 Allied offensive in France, when some examples of liaison aircraft with the U.S. Army began to be experimentally field-armed, and were already flying with pairs or quartets of the American ordnance[35]—and most notably used during the Battle of Arracourt—Major Charles "Bazooka Charlie" Carpenter mounted a battery of three M9 bazookas on the wing-to-fuselage struts on each side of his L-4 Grasshopper aircraft to attack enemy armor, and was credited with destroying six enemy tanks, including two Tiger I heavy tanks.[38][46] In the hands of American infantry the bazooka still enjoyed rare successes against heavy Nazi armored fighting vehicles. In 1945, during the failed Operation Nordwind offensive, a bazooka team managed the unlikely achievement of destroying a Jagdtiger heavy tank destroyer, the most heavily armored fighting vehicle in World War Two. The team managed to do this by positioning themselves to get a shot at the massive vehicle's thinner side armor, scoring a direct hit on the ammunition bustle and causing a catastrophic kill. This incident shows that when correctly aimed at vulnerable points on vehicles the bazooka could still be effective against even the largest of armored vehicles, though it required significant skill to accomplish.[47]

A German StuG III with "Schürzen" armor skirts

In a letter dated May 20, 1944, Gen. George S. Patton stated to a colleague that "the purpose of the bazooka is not to hunt tanks offensively, but to be used as a last resort in keeping tanks from overrunning infantry. To insure this, the range should be held to around 30 yards."[30]

In the Pacific campaign, as in North Africa, the original bazookas sent to combat often had reliability issues. The battery-operated firing circuit was easily damaged during rough handling, and the rocket motors often failed because of high temperatures and exposure to moisture, salt air, or humidity. With the introduction of the M1A1 and its more reliable rocket ammunition, the bazooka was effective against some fixed Japanese infantry emplacements such as small concrete bunkers and pillboxes.[48][49] Against coconut and sand emplacements, the weapon was not always effective, as these softer structures often reduced the force of the warhead's impact enough to prevent detonation of the explosive charge.[50] Later in the Pacific war, Army and Marine units often used the M2 flamethrower to attack such emplacements.[50] In the few instances in the Pacific where the bazooka was used against tanks and armored vehicles, the rocket's warhead easily penetrated the thin armor plate used by the Japanese and destroyed the vehicle.[51] Overall, the M1A1, M9, and M9A1 rocket launchers were viewed as useful and effective weapons during World War II, though they had been primarily employed against enemy emplacements and fixed fortifications, not as anti-tank weapons.[45] General Dwight Eisenhower later described it as one of the four "tools of victory" which won World War II for the Allies (together with the atom bomb, Jeep and the C-47 Skytrain transport aircraft).[52][53]

During the war, bazookas were lend-leased to the United Kingdom, Brazil, Canada, China, and Free French forces as well as the Soviet Union. Some were supplied to French maquis and Yugoslav partisans.[54]

Korean War

A 3.5 inch bazooka rocket—loader training projectile

The success of the more powerful German Panzerschreck caused the bazooka to be completely redesigned at the close of World War II. A larger, 3.5 in (89 mm) model was adopted, the M20 "super bazooka". Though bearing a superficial resemblance to the Panzerschreck, the M20 had a greater effective range, penetrating capability and was nearly 20% lighter than its German counterpart. The M20 weighed 14.3 pounds (6.5 kg) and fired a hollow shaped-charge 9 lb (4 kg) M28A2 HEAT rocket when used in an anti-tank role. It was also operated by a two-man team and had a rate of fire of six shots per minute. As with its predecessor, the M20 could also fire rockets with either practice (M29A2) or WP smoke (T127E3/M30) warheads. Having learned from experience of the sensitivity of the bazooka and its ammunition to moisture and harsh environments, the ammunition for the new weapon was packaged in moisture-resistant packaging, and the M20's field manual contained extensive instructions on launcher lubrication and maintenance, as well as storage of rocket ammunition.[55][56] When prepared for shipment from the arsenal, the weapon was protected by antifungal coatings over all electrical contacts, in addition to a cosmoline coating in the hand-operated magneto that ignited the rocket. Upon issue, these coatings were removed with solvent to ready the M20 for actual firing. However, budget cutbacks initiated by Secretary of Defense Louis A. Johnson in the years following World War II effectively canceled the intended widespread issue of the M20, and initial U.S. forces deploying to Korea were armed solely with the M9/M9A1 2.36-in. launcher and old stockpiled World War II inventories of M6A3 rocket ammunition.

At the outbreak of the Korean War, the South Korean military had 1,958 M9A1 rocket launchers that were given from the U.S. Forces Korea during withdrawal in 1948 to 1949, and they were the only anti-tank firearms that the Korean military had secured in sufficient quantities. The South Korean military actively operated rocket launchers against North Korean armor. However, the 2.36-inch rocket launcher failed to show its power against the front armor of T-34-85, which was the biggest threat. The South Korean military responded by firing rockets into the side, rear, or track through ambushes, but they did not have much effect.[57]

At the same time, the U.S. military dispatched its first troops to the Korean Peninsula without trusting reports that a 2.36-inch rocket could not destroy North Korean tanks. On July 5, 1950, during the Battle of Osan, Task Force Smith tried to stop North Korean tanks with 2.36-inch rocket launchers and 75 mm recoilless rifles but was overrun by 33 T-34-85s. One of the North Korean T-34 received a total of 22 shots on the side and rear at about 10 meters in distance, but survived the attack.[58][59][57]

On July 8, Colonel Robert R. Martin, commander of the 34th Regiment of the U.S. 24th Infantry Division, was killed while operating a 2.36-inch rocket launcher to prevent North Korean tanks from advancing.[57] Additionally, ordnance authorities received numerous combat reports regarding the failure of the M6A3 warhead to properly detonate upon impact, eventually traced to inventories of rocket ammunition that had deteriorated from numerous years of storage in humid or salt air environments. Therefore, the U.S. Army immediately airlifted a small number of available M20 Super Bazookas from the U.S. mainland after learning that it needed more powerful rockets. The rockets were deployed during the Battle of Taejon on July 18, and proved their power by destroying a number of North Korean tanks that entered the city on July 20. As a result, the U.S. Army rushed to secure more M20 rockets and was able to hold more than 900 Super Bazookas during the Battle of Pusan Perimeter. The South Korean military also began receiving the M20 in early August, and successfully destroyed four tanks with M20s during their first usage on 9 August.[60][57]

Large numbers of 2.36-inch bazookas that were captured during the Chinese Civil War were also employed by the Chinese forces against the American Sherman and Patton tanks,[61] and the Chinese later reverse engineered and produced a copy of the M20 designated the Type 51.[62] It is considered that the Communist-used bazookas destroyed more tanks than the UN bazookas did.[63]

Vietnam War

The M20 was used in the early stages of the war in Vietnam by the U.S. Marines before gradually being phased out by the mid-1960s in favor of the M67 recoilless rifle and later, the M72 LAW rocket. The U.S. Army also used it in lesser quantity. While occasions to destroy enemy armored vehicles proved exceedingly rare, it was employed against enemy fortifications and emplacements with success.[64] The M20 remained in service with South Vietnamese and indigenous forces until the late 1960s.[65]

The Vietnam People's Army also developed their own bazooka under the management of Tran Dai Nghia. It was successfully test-fired in 1947.[66][67] The anti-French Viet Minh received Chinese Type 51 bazookas. They were used by the Viet Cong as late as 1964.[65]

Other conflicts

The Portuguese Armed Forces used quantities of M9A1 and M20 rocket launchers in their overseas provinces in Africa against Marxist guerrilla forces during the Portuguese Overseas War.[citation needed] The French Army also used the M9A1 and M20A1 launchers in various campaigns in Indochina,[68] Korea,[69] and Algeria. The M20A1 was replaced in the 1970s by the LRAC F1.[68] Commonwealth armies also used the M20 and M20A1 under the name M20 Mk I and M20 Mk II. They were used until their replacement by the Carl Gustav L14A1. For instance, British Army used Super Bazookas during the Operation Vantage.[1]

The Argentine Army fielded M20s during the Falklands War.[70]


Rocket launcher, M1 "bazooka"

Rocket launcher, M1A1 "bazooka"

Rocket launcher, M9 "bazooka"

Rocket launcher, M9A1 "bazooka"

An optical reflector sight replaced the iron sights beginning in September 1944.[24] The M9A1 supplanted the M9 in production beginning in June 1944. It has an improved coupling mechanism for the launch tube; the overall length is 61.1 in (1.55 m) and 31.5 in (800 mm) when folded. Unloaded weight is 15.87 lb (7.20 kg).

Rocket launcher, M18 "bazooka"

Rocket launcher, M20 "super bazooka"

Super bazooka (mislabeled "SAM-7 shoulder-launched anti-aircraft missile, Russian made") in Batey ha-Osef Museum, Tel-Aviv, Israel

Rocket launcher, M20A1 "super bazooka"

Rocket launcher, M20B1 "super bazooka"

Rocket launcher, M20A1B1 "super bazooka"

Rocket launcher, M25 "three shot bazooka"

RL-83 Blindicide

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (April 2021) (Learn how and when to remove this template message)

3.5 in Hydroar M20A1B1 rocket launcher

88.9 mm Instalaza M65







See also


  1. ^ a b c d e f g h i j k l m n o p q r s t u v w Rottman 2012, p. 71.
  2. ^ a b David Campbell (2016). Israeli Soldier vs Syrian Soldier : Golan Heights 1967–73. Combat 18. illustrated by Johnny Shumate. Osprey Publishing. p. 78. ISBN 9781472813305.
  3. ^ a b Scales, Robert (May 31, 2010). "Edward Uhl". Time. Archived from the original on May 23, 2010.
  4. ^ Rottman 2012, p. 17.
  5. ^ Rottman 2012, p. 19.
  6. ^ a b Rottman 2012, p. 20.
  7. ^ Rottman 2012, p. 29.
  8. ^ "bazooka noun – Definition, pictures, pronunciation and usage notes". Oxford Advanced Learner's Dictionary.
  9. ^ a b c d e "Grenades through RPGs", Weaponology (programme), Military Channel, November 18, 2008
  10. ^ Rottman, Gordon L. (2014). Panzerfaust and Panzerschreck. Osprey Publishing. ISBN 978-1782007883.
  11. ^ a b "Has bazooka become a generic trademark?". Retrieved January 28, 2021.
  12. ^ Harper, Douglas. "bazooka : Etymology, origin and meaning". Online Etymology Dictionary. Retrieved February 11, 2023.
  13. ^ Wodehouse, P. G. (Pelham Grenville) (1909). The Swoop! or, How Clarence Saved England: A Tale of the Great Invasion. Retrieved February 11, 2023. 1 December 2004
  14. ^ van der Sijs, Nicoline (2009). Cookies, Coleslaw, and Stoops: The Influence of Dutch on the North American Languages. Amsterdam University Press. p. 271. ISBN 978-9-0896-4124-3. Retrieved December 14, 2017 – via Google Books.
  15. ^ Rottman 2012, p. 16.
  16. ^ Rottman 2012, p. 27.
  17. ^ Hoffman 2011, pp. 77–78.
  18. ^ Rottman 2012, pp. 14–15.
  19. ^ Mike Gruntman (July 30, 2004). Blazing the Trail: The Early History of Spacecraft and Rocketry. American Institute of Aeronautics & Ast. p. 178. ISBN 978-1563477058.
  20. ^ a b "Infantry Anti-Tank Weapons". Bayonet Strength. Archived from the original on July 31, 2008.
  21. ^ Green & Green 2000, pp. 36–37.
  22. ^ Zaloga, Steven J. (2005). US Anti-tank Artillery 1941–45. New vanguard. Vol. 107. Oxford: Osprey. p. 8. ISBN 9781841766904.
  23. ^ Hoffman 2011, pp. 76–78.
  24. ^ a b c d Zaloga 2016, p. [page needed].
  25. ^ Smith, Carl (2000), US Paratrooper, 1941–45, Osprey, p. 63, ISBN 978-1-85532-842-6.
  26. ^ Dunlap 1948, pp. 304–305.
  27. ^ TM 9-294: 2.36-inch A.T. Rocket Launcher M1A1, US War Department, September 1943.
  28. ^ Keith, Elmer (1979), Hell, I Was There, Petersen Publishing, pp. 184–91, ISBN 978-0-8227-3014-9.
  29. ^ Dunlap 1948, pp. 304.
  30. ^ a b c d e Green & Green 2000, pp. 38–39.
  31. ^ a b c Smart, Jeffrey (1997), "2", History of Chemical and Biological Warfare: An American Perspective, Aberdeen, MD, United States: Army Chemical and Biological Defense Command, p. 40.
  32. ^ "CDC – The Emergency Response Safety and Health Database: Systemic Agent: CYANOGEN CHLORIDE (CK) – NIOSH". September 27, 2018.
  33. ^ "Characteristics and Employment of Ground Chemical Munitions", Field Manual 3–5, Washington, DC: War Department, 1946, pp. 108–19.
  34. ^ Skates, John R (2000), The Invasion of Japan: Alternative to the Bomb, University of South Carolina Press, pp. 93–96, ISBN 978-1-57003-354-4
  35. ^ a b c Francis, Devon E. (1973). Mr. Piper and His Cubs. Iowa State University Press. p. 117. ISBN 9780813812502..
  36. ^ Piper Cub Weight & Balance Calculation, retrieved October 24, 2011
  37. ^ a b Fountain, Paul, The Maytag Messerschmitts, Flying Magazine, March 1945, p. 90.
  38. ^ a b "Piper Cub Tank Buster". Popular Science. Vol. 146, no. 2. New York: Popular Science Publishing Company. February 1945. p. 84. ISSN 0161-7370.
  39. ^ Gallagher, Wes, Major Charles Carpenter, Once History Teacher, Now Legend in Patton's Army, The Rock Island Argus, September 26, 1944
  40. ^ Puddle-Jumped Panzers, Newsweek, Newsweek Inc., Vol. 24, Part 2 (October 2, 1944), p. 31.
  41. ^ Helicopter Gunships: Deadly Combat Weapon Systems, Wayne Mutza, pp. 13–14.
  42. ^ Mayo 1968, p. 31.
  43. ^ Green & Green 2000, p. 38.
  44. ^ Popular Mechanics, Hearst Magazines, January 1944, p. 64
  45. ^ a b Green & Green 2000, p. 39.
  46. ^ Carpenter, Leland F, "Piper L-4J Grasshopper", Aviation Enthusiast Corner, Aero Web, archived from the original on September 4, 2011, retrieved October 21, 2011.
  47. ^ Wiley, David. "Tank Chats: Jagdtiger". The Tank Museum. Archived from the original on December 11, 2021. Retrieved August 10, 2020 – via YouTube. Archived 2019-06-24 at the Wayback Machine
  48. ^ Rottman, Gordon L (2007), US Airborne Units in the Pacific Theater 1942–45, Osprey, p. 43, ISBN 978-1-84603-128-1.
  49. ^ Harclerode, Peter (2005), Wings of War–Airborne Warfare 1918–1945, Weidenfeld & Nicolson, pp. 332–33, ISBN 0-304-36730-3.
  50. ^ a b Kleber & Birdsell 2001, pp. 549–54.
  51. ^ Green, Michael; Stewart, Greg (2004), Weapons of the Modern Marines, Zenith Imprint Press, p. 45, ISBN 978-0-7603-1697-9.
  52. ^ "The US Forces included Navy, Army, Army Air Force and Marine Corps". Digger history. Archived from the original on December 12, 2008. Retrieved November 19, 2008.
  53. ^ "Douglas VC-47A Skytrain DC-3". Aircraft. March field. Archived from the original on December 3, 2008. Retrieved November 19, 2008.
  54. ^ a b c d e f Rottman 2012, p. 38.
  55. ^ TM 9-297, 3.5-inch Rocket Launchers M20 and M20B1 (technical manual), Department of the Army, August 10, 1950, pp. 31–35, 86–88.
  56. ^ TM 9-1055-201-12, Launcher, Rocket, 3.5-in M20A1 and M20A1 B1 (technical manual), Washington, DC: Department of the Army, August 1968, p. 39.
  57. ^ a b c d e Bak, Dongchan (March 2021). Korean War : Weapons of the United Nations (PDF) (in Korean). Republic of Korea: Ministry of Defense Institute for Military History. pp. 66–70. ISBN 979-11-5598-079-8. Archived from the original (PDF) on September 20, 2022. Retrieved June 27, 2022.
  58. ^ Fukumitsu, Keith K, "No More Task Force Smiths", Professional Bulletin, US: Army, archived from the original on October 11, 2008.
  59. ^ former members of Task Force Smith (1985), To President Reagan on failure of 2.36 inch bazooka (letter).
  60. ^ Blair, Clay (2003), The Forgotten War: America in Korea, 1950–1953, Annapolis, MD: Naval Institute Press, ISBN 1-59114-075-7.
  61. ^ a b Appleman, Roy (1989). Disaster in Korea: The Chinese Confront MacArthur. Military History. Vol. 11. College Station, Texas: Texas A and M University. pp. 17–18, 118, 188, 120, 190. ISBN 978-1-60344-128-5.
  62. ^ Archer, Denis HR (1976), Infantry Weapons, Jane, p. 572, ISBN 0-531-03255-8.
  63. ^ a b Rottman, Gordon L. (December 2002). Korean War Order of Battle: United States, United Nations, and Communist Ground, Naval, and Air Forces, 1950–1953. Praeger. p. 199. ISBN 978-0-275-97835-8.
  64. ^ Rottman 2012, p. 69.
  65. ^ a b c Zabecki, David T. (May 2011). "Rockets and Rocket Launchers". In Tucker, Spencer C. (ed.). The Encyclopedia of the Vietnam War: A Political, Social, and Military History (2nd ed.). p. 987. ISBN 978-1-85109-960-3.
  66. ^ "Kỷ niệm 100 năm ngày sinh của cố GS. VS Trần Đại Nghĩa (100th birth anniversary of the late Professor. VS Tran Dai Nghia)" (in Vietnamese). Báo điện tử Quân đội nhân dân (People's Army Newspaper Online). September 13, 2013. Archived from the original on September 25, 2013.
  67. ^ "Chuyện chưa kể về Giáo sư Viện sĩ Trần Đại Nghĩa (The Untold Story of Academician Prof. Tran Dai Nghia)". Phunutoday (in Vietnamese). January 24, 2012.
  68. ^ a b c d Rottman 2012, p. 70.
  69. ^ Rossi, Michel (November 1992). "Le bataillon de Corée (1950/1953)". La Gazette des Armes (in French). No. 227. pp. 10–15. Archived from the original on May 21, 2021. Retrieved December 11, 2018.
  70. ^ Nick van der Bijl (July 30, 1992). Argentine Forces in the Falklands. Men-at-Arms 250. Osprey Publishing. p. 14. ISBN 9781855322271.
  71. ^ Guzmán, Julio S (April 1953), Armas Modernas de Infantería (in Spanish)
  72. ^ "Contactor latch assembly standardized", Preventative Maintenance Monthly, William "Bill" Ricca, November 1952, archived from the original (JPEG) on September 26, 2007.
  73. ^ Military Review, vol. 4, Jane, April 1, 1985, p. 81, ISBN 0-7106-0334-7.
  74. ^ a b Jane 1996, p. 300.
  75. ^ "Spain – M65 Anti-Tank Rocket Launcher". Tanks.Net. Archived from the original on March 2, 2014. Retrieved June 23, 2013.
  76. ^ Wiener 1987, p. 480.
  77. ^ "3.5 inch Rocket Launcher [Argentinian]". Imperial War Museum. Retrieved June 5, 2023. Captured from the Argentine forces during the Falklands Conflict, 1982.
  78. ^ "Out in the Cold: Australia's involvement in the Korean War - 3.5-inch M20 rocket launcher (bazooka)". Australian War Memorial. July 21, 2022. Retrieved June 5, 2023.
  79. ^ Wiener 1987, p. 478.
  80. ^ Maximiano, Cesar; Bonalume, Ricardo N. (2011). Brazilian Expeditionary Force in World War II. Men at Arms. Vol. 465. Osprey Publishing. p. 45. ISBN 978-1-8490-8483-3.
  81. ^ Canadian Army Manual of Training (CAMT) 7-12, Infantry Platoon Weapons, 3.5-Inch Rocket Launcher (All Arms). Canadian Army. 1955.
  82. ^ a b c d e f g h Gander, Terry J.; Cutshaw, Charles Q., eds. (2001). Jane's Infantry Weapons 2001/2002 (27th ed.). Coulsdon: Jane's Information Group. ISBN 9780710623171.
  83. ^ de Quesada, Alejandro (January 10, 2009). The Bay of Pigs: Cuba 1961. Elite 166. pp. 41, 60. ISBN 9781846033230.
  84. ^ Wiener 1987, p. 308.
  85. ^ "Military coup in Iraq ousts monarchy – archive, 1958". The Guardian. July 26, 2017.
  86. ^ Oppenheimer, A. R. (2009). IRA: The Bombs and The Bullets. A History of Deadly Ingenuity. Irish Academic Press, chapter 4. ISBN 978-0-7165-2895-1
  87. ^ "Second IRA rocket fails to explode", Belfast Telegraph, 29 September 1971.
  88. ^ "New menace in the IRA armoury", Daily Mirror, 15 July 1972.
  89. ^ Wiener 1987, p. 300.
  90. ^ Wu, Shang-su (2016). The Defence Capabilities of Small States: Singapore and Taiwan's Responses to Strategic Desperation. Critical Studies of the Asia-Pacific. Palgrave Macmillan UK. p. 90. ISBN 978-1-137-49716-1.
  91. ^ Malkin, Elisabeth (October 1, 2018). "50 Years After a Student Massacre, Mexico Reflects on Democracy". The New York Times.
  92. ^ Cordesman, Anthony (2016). After The Storm: The Changing Military Balance in the Middle East. Bloomsbury Publishing. p. 112. ISBN 978-1-4742-9257-3.
  93. ^ Rottman 2012, p. 4.
  94. ^ Talens 1994, p. 392.
  95. ^ Talens 1994, p. 394.
  96. ^ Jowett, Philip (2016). Modern African Wars (5): The Nigerian-Biafran War 1967–70. Oxford: Osprey Publishing Press. p. 20. ISBN 978-1472816092.
  97. ^ Wiener 1987, p. 269.
  98. ^ Small Arms Survey (2015). "Red Flags and Buicks: Global Firearms Stockpiles". Small Arms Survey 2002: Counting the Human Cost. Oxford University Press. p. 71. Archived from the original (PDF) on March 3, 2011.
  99. ^ Neil Grant (2015). Rhodesian Light Infantryman: 1961–1980. Osprey Publishing. p. 22. ISBN 978-1472809629.
  100. ^ Gordon L. Rottman (2010). Army of the Republic of Vietnam 1955–75. Vol. Men-at-Arms 458. Osprey Publishing. p. 7. ISBN 9781849081818.
  101. ^ Wiener 1987, p. 337.
  102. ^ Central Office of Information (c. 1960). "3.5-inch Rocket launcher 'Bazooka' and crew, Devon and Dorset Regiment, 1960 (c)". National Army Museum. Retrieved June 5, 2023.
  103. ^ War Office (1953). WO Code No. 8774, Infantry Training Volume I, Pamphlet No. 9, Part II 3.5-Inch Rocket Launcher.
  104. ^ War Office (1953). WO Code No. 8774, Infantry Training Volume I, Pamphlet No. 9, Part II 3.5-Inch Rocket Launcher. p. 14.