Holmium, 67Ho
Pronunciation/ˈhlmiəm/ (HOHL-mee-əm)
Appearancesilvery white
Standard atomic weight Ar°(Ho)
  • 164.930329±0.000005
  • 164.93±0.01 (abridged)[1]
Holmium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


Atomic number (Z)67
Groupf-block groups (no number)
Periodperiod 6
Block  f-block
Electron configuration[Xe] 4f11 6s2
Electrons per shell2, 8, 18, 29, 8, 2
Physical properties
Phase at STPsolid
Melting point1734 K ​(1461 °C, ​2662 °F)
Boiling point2873 K ​(2600 °C, ​4712 °F)
Density (near r.t.)8.79 g/cm3
when liquid (at m.p.)8.34 g/cm3
Heat of fusion17.0 kJ/mol
Heat of vaporization251 kJ/mol
Molar heat capacity27.15 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1432 1584 (1775) (2040) (2410) (2964)
Atomic properties
Oxidation states0,[2] +1, +2, +3 (a basic oxide)
ElectronegativityPauling scale: 1.23
Ionization energies
  • 1st: 581.0 kJ/mol
  • 2nd: 1140 kJ/mol
  • 3rd: 2204 kJ/mol
Atomic radiusempirical: 176 pm
Covalent radius192±7 pm
Color lines in a spectral range
Spectral lines of holmium
Other properties
Natural occurrenceprimordial
Crystal structurehexagonal close-packed (hcp)
Hexagonal close packed crystal structure for holmium
Speed of sound thin rod2760 m/s (at 20 °C)
Thermal expansionpoly: 11.2 µm/(m⋅K) (at r.t.)
Thermal conductivity16.2 W/(m⋅K)
Electrical resistivitypoly: 814 nΩ⋅m (at r.t.)
Magnetic orderingparamagnetic
Young's modulus64.8 GPa
Shear modulus26.3 GPa
Bulk modulus40.2 GPa
Poisson ratio0.231
Vickers hardness410–600 MPa
Brinell hardness500–1250 MPa
CAS Number7440-60-0
DiscoveryJacques-Louis Soret and Marc Delafontaine (1878)
Isotopes of holmium
Main isotopes[3] Decay
abun­dance half-life (t1/2) mode pro­duct
163Ho synth 4570 y ε 163Dy
164Ho synth 28.8 min ε 164Dy
β 164Er
165Ho 100% stable
166Ho synth 26.812 h β 166Er
166m1Ho synth 1132.6 y β 166Er
167Ho synth 3.1 h β 167Er
 Category: Holmium
| references

Holmium is a chemical element with the symbol Ho and atomic number 67. It is a rare-earth element and the eleventh member of the lanthanide series. It is a relatively soft, silvery, fairly corrosion-resistant and malleable metal. Like a lot of other lanthanides, holmium is too reactive to be found in native form, as pure holmium slowly forms a yellowish oxide coating when exposed to air. When isolated, holmium is relatively stable in dry air at room temperature. However, it reacts with water and corrodes readily, and also burns in air when heated.

In nature, holmium occurs together with the other rare-earth metals (like thulium). It is a relatively rare lanthanide, making up 1.4 parts per million of the Earth's crust, an abundance similar to tungsten. Holmium was discovered through isolation by Swedish chemist Per Theodor Cleve and independently by Jacques-Louis Soret and Marc Delafontaine, who observed it spectroscopically in 1878. Its oxide was first isolated from rare-earth ores by Cleve in 1878. The element's name comes from Holmia, the Latin name for the city of Stockholm.[4][5][6]

Like many other lanthanides, holmium is found in the minerals monazite and gadolinite and is usually commercially extracted from monazite using ion-exchange techniques. Its compounds in nature and in nearly all of its laboratory chemistry are trivalently oxidized, containing Ho(III) ions. Trivalent holmium ions have fluorescent properties similar to many other rare-earth ions (while yielding their own set of unique emission light lines), and thus are used in the same way as some other rare earths in certain laser and glass-colorant applications.

Holmium has the highest magnetic permeability and magnetic saturation of any element and is thus used for the pole pieces of the strongest static magnets. Because holmium strongly absorbs neutrons, it is also used as a burnable poison in nuclear reactors.


Physical properties

Holmium is the eleventh member of the lanthanide series. In the periodic table, it appears between the lanthanides dysprosium to its left and erbium to its right, and above the actinide einsteinium. It is a relatively soft and malleable element that is fairly corrosion-resistant and stable in dry air at standard temperature and pressure. In moist air and at higher temperatures, however, it quickly oxidizes, forming a yellowish oxide.[7] In pure form, holmium possesses a metallic, bright silvery luster. With a boiling point of 2727 °C, Holmium is the sixth most volatile lanthanide after ytterbium, europium, samarium, thulium and dysprosium. At ambient conditions, Holmium, like many of the second half of the lanthanides, normally assumes a hexagonally close-packed (hcp) structure.[8] Its 67 electrons are arranged in the configuration [Xe] 4f11 6s2, so that it has thirteen valence electrons filling the 4f and 6s subshells.

Holmium, like all of the lanthanides (except lanthanum, ytterbium and lutetium, which have no unpaired 4f electrons), is paramagnetic in ambient conditions,[9] but is ferromagnetic at temperatures below 19 K.[10] It has the highest magnetic moment (10.6 μB) of any naturally occurring element and possesses other unusual magnetic properties. When combined with yttrium, it forms highly magnetic compounds.[11]

Chemical properties

Holmium metal tarnishes slowly in air, forming a yellowish oxide layer like iron rust. It burns readily to form holmium(III) oxide:[12]

4 Ho + 3 O2 → 2 Ho2O3

Holmium is quite electropositive and is generally trivalent. It reacts slowly with cold water and quite quickly with hot water to form holmium(III) hydroxide:[13]

2 Ho (s) + 6 H2O (l) → 2 Ho(OH)3 (aq) + 3 H2 (g)

Holmium metal reacts with all the stable halogens:[14]

2 Ho (s) + 3 F2 (g) → 2 HoF3 (s) [pink]
2 Ho (s) + 3 Cl2 (g) → 2 HoCl3 (s) [yellow]
2 Ho (s) + 3 Br2 (g) → 2 HoBr3 (s) [yellow]
2 Ho (s) + 3 I2 (g) → 2 HoI3 (s) [yellow]

Holmium dissolves readily in dilute sulfuric acid to form solutions containing the yellow Ho(III) ions, which exist as a [Ho(OH2)9]3+ complexes:[14]

2 Ho (s) + 3 H2SO4 (aq) → 2 Ho3+ (aq) + 3 SO2−
(aq) + 3 H2 (g)

Oxidation states

As with many lanthanides, holmium is usually found in the +3 oxidation state, forming compounds such as Holmium(III) fluoride (HoF3) and Holmium(III) chloride (HoCl3). Holmium in solution is in the form of Ho3+ surrounded by nine molecules of water. Holmium dissolves in acids.[15] However, holmium is found to also exist in the +2, +1 and 0 oxidation states.


Main article: Isotopes of holmium

The isotopes of holmium range from 140Ho to 175Ho. The primary decay mode before the most abundant stable isotope, 165Ho, is positron emission, and the primary mode after is beta minus decay. The primary decay products before 165Ho are terbium and dysprosium isotopes, and the primary products after are erbium isotopes.[16]

Natural holmium consists of one primordial isotope, holmium-165; it is the only isotope of holmium that is thought to be stable, although it is predicted to undergo alpha decay to terbium-161 with a very long half-life.[17][18] 35 synthetic radioactive isotopes are known; the most stable one is holmium-163 (163Ho), with a half-life of 4570 years.[19] All other radioisotopes have ground-state half-lives not greater than 1.117 days, with the longest, holmium-166 (166Ho) having a half-life of 26.83 hours,[20] and most have half-lives under 3 hours. However, the metastable 166m1Ho has a half-life of around 1200 years because of its high spin. This fact, combined with a high excitation energy resulting in a particularly rich spectrum of decay gamma rays produced when the metastable state de-excites, makes this isotope useful in nuclear physics experiments as a means for calibrating energy responses and intrinsic efficiencies of gamma ray spectrometers.


Oxides and chalcogenides

Ho2O3, left: natural light, right: under a cold-cathode fluorescent lamp
Ho2O3, left: natural light, right: under a cold-cathode fluorescent lamp

Holmium(III) oxide is the only oxide of holmium. It changes its apparent color depending on the lighting conditions. In daylight, it has a tannish yellow color. Under trichromatic light, it appears orange red,[21] almost indistinguishable from the appearance of erbium oxide under the same lighting conditions.[citation needed] The perceived color change is related to the sharp emission lines of trivalent holmium ions acting as red phosphors.[22]

Other chalcogenides are known for holmium. Holmium(III) sulfide has orange-yellow crystals in the monoclinic crystal system,[16] with the space group P21/m (No. 11).[23] Under high pressure, holmium(III) sulfide can form in the cubic and orthorhombic crystal systems.[24] It can be obtained by the reaction of holmium(III) oxide and hydrogen sulfide at 1325 °C.[25] Holmium(III) selenide is also known. It is antiferromagnetic below 6 K.[26]


All four trihalides of holmium are known. Holmium(III) fluoride is a yellowish powder that can be produced by reacting holmium(III) oxide and ammonium fluoride, then crystallising it from the ammonium salt formed in solution.[27] Holmium(III) chloride can be prepared in a similar way, with ammonium chloride instead of ammonium fluoride.[28] It has the YCl3 layer structure in the solid state.[29] These compounds, as well as holmium(III) bromide and holmium(III) iodide, can be obtained by the direct reaction of the elements:[14]

2 Ho + 3 X2 → 2 HoX3

In addition, holmium(III) iodide can be obtained by the direct reaction of holmium and mercury(II) iodide, then removing the mercury by distillation.[30]

Organoholmium compounds

See also: Organolanthanide chemistry

Organoholmium compounds are very similar to those of the other lanthanides, as they all share an inability to undergo π backbonding. They are thus mostly restricted to the mostly ionic cyclopentadienides (isostructural with those of lanthanum) and the σ-bonded simple alkyls and aryls, some of which may be polymeric.[31]


Per Teodor Cleve in around 1885

Holmium (Holmia, Latin name for Stockholm) was discovered by Jacques-Louis Soret and Marc Delafontaine in 1878 who noticed the aberrant spectrographic absorption bands of the then-unknown element (they called it "Element X").[32][33]

As well, Per Teodor Cleve independently discovered the element while he was working on erbia earth (erbium oxide), and was the first to isolate it.[5][4][34][35][36] Using the method developed by Carl Gustaf Mosander, Cleve first removed all of the known contaminants from erbia. The result of that effort was two new materials, one brown and one green. He named the brown substance holmia (after the Latin name for Cleve's home town, Stockholm) and the green one thulia. Holmia was later found to be the holmium oxide, and thulia was thulium oxide.[17]

In Henry Moseley's classic paper[37] on atomic numbers, holmium was assigned an atomic number of 66. Evidently, the holmium preparation he had been given to investigate had been grossly impure, dominated by neighboring (and unplotted) dysprosium. He would have seen x-ray emission lines for both elements, but assumed that the dominant ones belonged to holmium, instead of the dysprosium impurity.

Occurrence and production


Like all other rare earths, holmium is not naturally found as a free element. It does occur combined with other elements in gadolinite (the black part of the specimen illustrated to the right), monazite and other rare-earth minerals. No holmium-dominant mineral has yet been found.[38] The main mining areas are China, United States, Brazil, India, Sri Lanka, and Australia with reserves of holmium estimated as 400,000 tonnes.[17] The annual production of holmium metal is of about 10 tonnes per year.[39]

Holmium makes up 1.4 parts per million of the Earth's crust by mass. This makes it the 56th most abundant element in the Earth's crust. Holmium makes up 1 part per million of the soils, 400 parts per quadrillion of seawater, and almost none of Earth's atmosphere, which is very rare for a lanthanide.[40] It makes up 500 parts per trillion of the universe by mass.[41]

It is commercially extracted by ion exchange from monazite sand (0.05% holmium), but is still difficult to separate from other rare earths. The element has been isolated through the reduction of its anhydrous chloride or fluoride with metallic calcium.[16] Its estimated abundance in the Earth's crust is 1.3 mg/kg. Holmium obeys the Oddo–Harkins rule: as an odd-numbered element, it is less abundant than its immediate even-numbered neighbors, dysprosium and erbium. However, it is the most abundant of the odd-numbered heavy lanthanides. Of the lanthanides, only promethium, thulium, lutetium and terbium are less abundant on Earth. The principal current source are some of the ion-adsorption clays of southern China. Some of these have a rare-earth composition similar to that found in xenotime or gadolinite. Yttrium makes up about 2/3 of the total by mass; holmium is around 1.5%. The original ores themselves are very lean, maybe only 0.1% total lanthanide, but are easily extracted.[42] Holmium is relatively inexpensive for a rare-earth metal with the price about 1000 USD/kg.[43]



Holmium has the highest magnetic strength of any element, and therefore is used to create the strongest artificially generated magnetic fields, when placed within high-strength magnets as a magnetic pole piece (also called a magnetic flux concentrator).[44] Holmium is also used in the manufacture of some permanent magnets.


Holmium-doped yttrium iron garnet (YIG) and yttrium lithium fluoride (YLF) have applications in solid-state lasers, and Ho-YIG has applications in optical isolators and in microwave equipment (e.g., YIG spheres). Holmium lasers emit at 2.1 micrometres.[45] They are used in medical, dental, and fiber-optical applications.[11] It is also being considered for usage in the enucleation of the prostate.[46]

Spectrometer calibration

A solution of 4% holmium oxide in 10% perchloric acid, permanently fused into a quartz cuvette as an optical calibration standard
A solution of 4% holmium oxide in 10% perchloric acid, permanently fused into a quartz cuvette as an optical calibration standard

Glass containing holmium oxide and holmium oxide solutions (usually in perchloric acid) have sharp optical absorption peaks in the spectral range 200–900 nm. They are therefore used as a calibration standard for optical spectrophotometers.[47][48][49]

The radioactive but long-lived 166m1Ho (see "Isotopes" above) is used in calibration of gamma-ray spectrometers.[50]

Other uses

Since holmium can absorb nuclear fission-bred neutrons, it is used as a burnable poison to regulate nuclear reactors.[17]

It is used as a colorant for cubic zirconia, providing pink coloring,[51] and for glass, providing yellow-orange coloring.[citation needed]

In March 2017, IBM announced that they had developed a technique to store one bit of data on a single holmium atom set on a bed of magnesium oxide.[52] With sufficient quantum and classical control techniques, Ho could be a good candidate to make quantum computers.[53]

Biological role and precautions

Holmium plays no biological role in humans, but its salts are able to stimulate metabolism.[16] Humans typically consume about a milligram of holmium a year. Plants do not readily take up holmium from the soil. Some vegetables have had their holmium content measured, and it amounted to 100 parts per trillion.[15] Holmium and its soluble salts are slightly toxic if ingested, but insoluble holmium salts are nontoxic.[54] Metallic holmium in dust form presents a fire and explosion hazard.[55][56][57] Large amounts of holmium salts can cause severe damage if inhaled, consumed orally, or injected. The biological effects of holmium over a long period of time are not known. Holmium has a low level of acute toxicity.[58]


The price of 1 kilogram of Holmium Oxide 99.5% (FOB China in RMB/Kg) is given by the Institute of Rare Earths Elements and Strategic Metals as below USD 500 until March 2011; it then rose steeply to just below USD 4,500 by July 2011 and steadily declined to USD 750 by mid-2012.[59] The average price for the six month period of April to September 2022 is given by the Institute as follows: Holmium Oxide - 99.5%min EXW China - 94.34 EUR/kg.[60]

See also


  1. ^ "Standard Atomic Weights: Holmium". CIAAW. 2021.
  2. ^ Yttrium and all lanthanides except Ce and Pm have been observed in the oxidation state 0 in bis(1,3,5-tri-t-butylbenzene) complexes, see Cloke, F. Geoffrey N. (1993). "Zero Oxidation State Compounds of Scandium, Yttrium, and the Lanthanides". Chem. Soc. Rev. 22: 17–24. doi:10.1039/CS9932200017. and Arnold, Polly L.; Petrukhina, Marina A.; Bochenkov, Vladimir E.; Shabatina, Tatyana I.; Zagorskii, Vyacheslav V.; Cloke (2003-12-15). "Arene complexation of Sm, Eu, Tm and Yb atoms: a variable temperature spectroscopic investigation". Journal of Organometallic Chemistry. 688 (1–2): 49–55. doi:10.1016/j.jorganchem.2003.08.028.
  3. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  4. ^ a b Marshall, James L. Marshall; Marshall, Virginia R. Marshall (2015). "Rediscovery of the elements: The Rare Earths–The Confusing Years" (PDF). The Hexagon: 72–77. Retrieved 30 December 2019.
  5. ^ a b "Holmium". Royal Society of Chemistry. 2020. Retrieved 4 January 2020.
  6. ^ Stwertka, Albert (1998). A guide to the elements (2nd ed.). Oxford University Press. p. 161. ISBN 0-19-508083-1.
  7. ^ Phillips, W. L. (1964-08-01). "Oxidation of several lanthanide elements". Journal of the Less Common Metals. 7 (2): 139–143. doi:10.1016/0022-5088(64)90056-6. ISSN 0022-5088.
  8. ^ Strandburg, D. L.; Legvold, S.; Spedding, F. H. (1962-09-15). "Electrical and Magnetic Properties of Holmium Single Crystals". Physical Review. 127 (6): 2046–2051. Bibcode:1962PhRv..127.2046S. doi:10.1103/PhysRev.127.2046.
  9. ^ Cullity, B. D.; Graham, C. D. (2011). Introduction to Magnetic Materials. John Wiley & Sons. ISBN 978-1-118-21149-6.
  10. ^ Jiles, David (1998). Introduction to magnetism and magnetic materials. CRC Press. p. 228. ISBN 0-412-79860-3.
  11. ^ a b C. K. Gupta; Nagaiyar Krishnamurthy (2004). Extractive metallurgy of rare earths. CRC Press. p. 30. ISBN 0-415-33340-7.
  12. ^ Wahyudi, Tatang (2015). "REVIEWING THE PROPERTIES OF RARE EARTH ELEMENT-BEARING MINERALS, RARE EARTH ELEMENTS AND CERIUM OXIDE COMPOUND". Indonesian Mining Journal. 18 (2): 92–108. doi:10.30556/imj.Vol18.No2.2015.293 (inactive 2023-03-09). ISSN 2527-8797.((cite journal)): CS1 maint: DOI inactive as of March 2023 (link)
  13. ^ An, Tao; Dou, Chunyue; Ju, Jinning; Wei, Wenlong; Ji, Quanzeng (2019-06-01). "Microstructure, morphology, wettability and mechanical properties of Ho2O3 films prepared by glancing angle deposition". Vacuum. 164: 405–410. Bibcode:2019Vacuu.164..405A. doi:10.1016/j.vacuum.2019.03.057. ISSN 0042-207X. S2CID 133466738.
  14. ^ a b c "Chemical reactions of Holmium". Webelements. Retrieved 2009-06-06.
  15. ^ a b Emsley, John (2011). Nature's Building Blocks.
  16. ^ a b c d C. R. Hammond (2000). The Elements, in Handbook of Chemistry and Physics (81st ed.). CRC press. ISBN 0-8493-0481-4.
  17. ^ a b c d John Emsley (2001). Nature's building blocks: an A-Z guide to the elements. US: Oxford University Press. pp. 181–182. ISBN 0-19-850341-5.
  18. ^ Belli, P.; Bernabei, R.; Danevich, F. A.; et al. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A. 55 (8): 140–1–140–7. arXiv:1908.11458. Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. ISSN 1434-601X. S2CID 201664098.
  19. ^ Naumann, R. A.; Michel, M. C.; Power, J. L. (September 1960). "Preparation of long-lived holmium-163". Journal of Inorganic and Nuclear Chemistry. 15 (1–2): 195–196. doi:10.1016/0022-1902(60)80035-8. OSTI 4120223.
  20. ^ Suzuki, Yuka S (1998). "Biodistribution and kinetics of holmium-166-chitosan complex (DW-166HC) in rats and mice" (PDF). Journal of Nuclar Medicine. 39 (12): 2161–2166. PMID 9867162.
  21. ^ Ganjali, Mohammad Reza; Gupta, Vinod Kumar; Faridbod, Farnoush; Norouzi, Parviz (2016-02-25). Lanthanides Series Determination by Various Analytical Methods. Elsevier. p. 27. ISBN 978-0-12-420095-1.
  22. ^ Su, Yiguo; Li, Guangshe; Chen, Xiaobo; Liu, Junjie; Li, Liping (2008). "Hydrothermal Synthesis of GdVO4:Ho3+ Nanorods with a Novel White-light Emission". Chemistry Letters. 37 (7): 762–763. doi:10.1246/cl.2008.762.
  23. ^ "Ho2S3: crystal structure, physical properties". Non-Tetrahedrally Bonded Binary Compounds II. Landolt-Börnstein - Group III Condensed Matter. Vol. 41D. 2000. pp. 1–3. doi:10.1007/10681735_623. ISBN 3-540-64966-2. Archived from the original on 2018-09-01. Retrieved 2021-06-22.
  24. ^ Tonkov, E. Yu (1998). Compounds and Alloys Under High Pressure A Handbook. CRC Press. p. 272. ISBN 978-90-5699-047-3.
  25. ^ G. Meyer; Lester R. Morss, eds. (1991). Synthesis of Lanthanide and Actinide Compounds. Kluwer Academic Publishers. pp. 329–335. ISBN 0792310187.
  26. ^ Bespyatov, M. A.; Musikhin, A. E.; Naumov, V. N.; Zelenina, L. N.; Chusova, T. P.; Nikolaev, R. E.; Naumov, N. G. (2018-03-01). "Low-temperature thermodynamic properties of holmium selenide (2:3)". The Journal of Chemical Thermodynamics. 118: 21–25. doi:10.1016/j.jct.2017.10.013. ISSN 0021-9614.
  27. ^ Riedel, moderne anorganische Chemie. Erwin Riedel, Christoph Janiak, Hans-Jürgen Meyer (4. Aufl ed.). Berlin: De Gruyter. 2012. ISBN 978-3-11-024900-2. OCLC 781540844.((cite book)): CS1 maint: others (link)
  28. ^ Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY.
  29. ^ Wells, A. F. (1984). Structural inorganic chemistry (5th ed.). Oxford [Oxfordshire]: Clarendon Press. ISBN 9780198553700. OCLC 8866491.
  30. ^ Asprey, L. B.; Keenan, T. K.; Kruse, F. H. (1964). "Preparation and crystal data for lanthanide and actinide triiodides". Inorganic Chemistry. 3 (8): 1137–1141. doi:10.1021/ic50018a015.
  31. ^ Greenwood and Earnshaw, pp. 1248–9
  32. ^ Jacques-Louis Soret (1878). "Sur les spectres d'absorption ultra-violets des terres de la gadolinite". Comptes rendus de l'Académie des sciences. 87: 1062.
  33. ^ Jacques-Louis Soret (1879). "Sur le spectre des terres faisant partie du groupe de l'yttria". Comptes rendus de l'Académie des sciences. 89: 521.
  34. ^ Weeks, Mary Elvira (1956). The discovery of the elements (6th ed.). Easton, PA: Journal of Chemical Education.
  35. ^ Per Teodor Cleve (1879). "Sur deux nouveaux éléments dans l'erbine". Comptes rendus de l'Académie des sciences. 89: 478–480. Cleve named holmium on p. 480: "Je propose pour ce métal le nom de holmium, Ho, dérivé du nom latinisé de Stockholm, dont les environs renferment tant de minéraux riches en yttria." (I propose for this metal the name of "holmium", Ho, [which is] derived from the Latin name for Stockholm, the environs of which contain so many minerals rich in yttrium.)
  36. ^ Per Teodor Cleve (1879). "Sur l'erbine". Comptes rendus de l'Académie des sciences. 89: 708.
  37. ^ Moseley, H.G.J. (1913). "The high-frequency spectra of the elements". Philosophical Magazine. 6th series. 26: 1024–1034.
  38. ^ Hudson Institute of Mineralogy (1993–2018). "Mindat.org". www.mindat.org. Retrieved 14 January 2018.
  39. ^ MMTA. "Holmium". MMTA. Retrieved 2022-12-05.
  40. ^ Emsley, John (2011). Nature's Building Blocks. Oxford University Press.
  41. ^ Ltd, Mark Winter, University of Sheffield and WebElements. "WebElements Periodic Table » Periodicity » Abundance in the universe » periodicity". www.webelements.com. Archived from the original on 2017-09-29. Retrieved 27 March 2018.
  42. ^ Patnaik, Pradyot (2003). Handbook of Inorganic Chemical Compounds. McGraw-Hill. pp. 338–339. ISBN 0-07-049439-8. Retrieved 2009-06-06.
  43. ^ James B. Hedrick. "Rare-Earth Metals" (PDF). USGS. Retrieved 2009-06-06.
  44. ^ R. W. Hoard; S. C. Mance; R. L. Leber; E. N. Dalder; M. R. Chaplin; K. Blair; et al. (1985). "Field enhancement of a 12.5-T magnet using holmium poles". IEEE Transactions on Magnetics. 21 (2): 448–450. Bibcode:1985ITM....21..448H. doi:10.1109/tmag.1985.1063692. S2CID 121828376.
  45. ^ Wollin, T. A.; Denstedt, J. D. (Feb 1998). "The holmium laser in urology". Journal of Clinical Laser Medicine & Surgery. 16 (1): 13–20. doi:10.1089/clm.1998.16.13. PMID 9728125.
  46. ^ Gilling, Peter J.; Aho, Tevita F.; Frampton, Christopher M.; King, Colleen J.; Fraundorfer, Mark R. (2008-04-01). "Holmium Laser Enucleation of the Prostate: Results at 6 Years". European Urology. 53 (4): 744–749. doi:10.1016/j.eururo.2007.04.052. ISSN 0302-2838. PMID 17475395.
  47. ^ Allen, David W. (2007). "Holmium oxide glass wavelength standards". Journal of Research of the National Institute of Standards and Technology. 112 (6): 303–306. doi:10.6028/jres.112.024. ISSN 1044-677X. PMC 4655923. PMID 27110474.
  48. ^ Travis, John C.; Zwinkels, Joanne C.; Mercader, Flora; et al. (2002-06-05). "An International Evaluation of Holmium Oxide Solution Reference Materials for Wavelength Calibration in Molecular Absorption Spectrophotometry". Analytical Chemistry. 74 (14): 3408–3415. doi:10.1021/ac0255680. ISSN 0003-2700. PMID 12139047.
  49. ^ R. P. MacDonald (1964). "Uses for a Holmium Oxide Filter in Spectrophotometry" (PDF). Clinical Chemistry. 10 (12): 1117–20. doi:10.1093/clinchem/10.12.1117. PMID 14240747.
  50. ^ Ming-Chen Yuan; Jeng-Hung Lee & Wen-Song Hwang (2002). "The absolute counting of 166mHo, 58Co and 88Y". Applied Radiation and Isotopes. 56 (1–2): 429–434. doi:10.1016/S0969-8043(01)00226-3. PMID 11839051.
  51. ^ Nassau, Kurt (Spring 1981). "Cubic zirconia: An Update" (PDF). Gems & Gemology. 1: 9–19. doi:10.5741/GEMS.17.1.9.
  52. ^ Coldeway, Devin (March 9, 2017). "Storing data in a single atom proved possible by IBM researchers". TechCrunch. Retrieved 2017-03-10.
  53. ^ Forrester, Patrick Robert; Patthey, François; Fernandes, Edgar; Sblendorio, Dante Phillipe; Brune, Harald; Natterer, Fabian Donat (2019-11-19). "Quantum state manipulation of single atom magnets using the hyperfine interaction". Physical Review B. 100 (18): 180405. arXiv:1903.00242. Bibcode:2019PhRvB.100r0405F. doi:10.1103/PhysRevB.100.180405. ISSN 2469-9950.
  54. ^ Emsley, John (2001). "Erbium". Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 136–139. ISBN 978-0-19-850340-8.
  55. ^ Haley, T. J.; Koste, L.; Komesu, N.; Efros, M.; Upham, H. C. (1966). "Pharmacology and toxicology of dysprosium, holmium, and erbium chlorides". Toxicology and Applied Pharmacology. 8 (1): 37–43. doi:10.1016/0041-008x(66)90098-6. PMID 5921895.
  56. ^ Haley, T. J. (1965). "Pharmacology and toxicology of the rare earth elements". Journal of Pharmaceutical Sciences. 54 (5): 663–70. doi:10.1002/jps.2600540502. PMID 5321124.
  57. ^ Bruce, D. W.; Hietbrink, B. E.; Dubois, K. P. (1963). "The acute mammalian toxicity of rare earth nitrates and oxides". Toxicology and Applied Pharmacology. 5 (6): 750–9. doi:10.1016/0041-008X(63)90067-X. PMID 14082480.
  58. ^ "Holmium: Biological Action". 2011-04-15. Archived from the original on 2011-04-15. Retrieved 2023-03-05.
  59. ^ Specification and spelling: "holmium"..access-date=27 October 2022.
  60. ^ "ISE Metal-qoutes"..access-date=27 October 2022.


Further reading