In the periodic table of the elements, each numbered column is a group.

In chemistry, a group (also known as a family[1]) is a column of elements in the periodic table of the chemical elements. There are 18 numbered groups in the periodic table, and the f-block columns (between groups 3 and 4) are not numbered. The elements in a group have similar physical or chemical characteristics of the outermost electron shells of their atoms (i.e., the same core charge), as most chemical properties are dominated by the orbital location of the outermost electron.

There are three systems of group numbering for the groups, that often assign the same number to different groups. The modern numbering "group 1" to "group 18" has been recommended by the International Union of Pure and Applied Chemistry (IUPAC) since about 1990. It replaces two older incompatible naming schemes, used by the Chemical Abstract Service (CAS, more popular in the U. S.), and by IUPAC before 1990 (more popular in Europe).

Groups may also be identified by their topmost element or have a specific name. For example, group 16 is variously described as the "oxygen group" and as the "chalcogens". However, iron group usually does not mean "group 8". In chemistry it may mean either iron, cobalt, and nickel, or some other set of elements with similar chemical properties. In astrophysics and nuclear physics, it usually means those three plus chromium and manganese.

Group names

In history, several sets of group names have been used:[2][3]

IUPAC group 1a 2 b 3c 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Mendeleev (I–VIII) IA IIA IIIB IVB VB VIB VIIB VIIIB IB IIB IIIB IVB VB VIB VIIB d
CAS (US, A-B-A) IA IIA IIIB IVB VB VIB VIIB VIIIB IB IIB IIIA IVA VA VIA VIIA VIIIA
Old IUPAC (Europe, A-B) IA IIA IIIA IVA VA VIA VIIA VIIIB IB IIB IIIB IVB VB VIB VIIB 0
Trivial namer H and alkali metals alkaline earth metals triels tetrels pnicto­gens chal­co­gens halo­gens noble gases
Name by elementr lith­ium group beryl­lium group scan­dium group titan­ium group vana­dium group chro­mium group man­ga­nese group iron group co­balt group nickel group cop­per group zinc group boron group car­bon group nitro­gen group oxy­gen group fluor­ine group helium or neon group
Period 1  H  He
Period 2 Li Be B C N O F Ne
Period 3 Na Mg Al Si P S Cl Ar
Period 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Period 5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Period 6 Cs Ba La–Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Period 7 Fr Ra Ac–No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
a Group 1 is composed of hydrogen (H) and the alkali metals. Elements of the group have one s-electron in the outer electron shell. Hydrogen is not considered to be an alkali metal as it is not a metal, though it is more analogous to them than any other group. This makes the group somewhat exceptional.
b The 14 f-block groups (columns) do not have a group number.
c The correct composition of group 3 is scandium (Sc), yttrium (Y), lutetium (Lu), and lawrencium (Lr), as shown here: this is endorsed by 1988[4] and 2021[5] IUPAC reports on the question. General inorganic chemistry texts often put scandium (Sc), yttrium (Y), lanthanum (La), and actinium (Ac) in group 3, so that Ce–Lu and Th–Lr become the f-block between groups 3 and 4; this was based on incorrectly measured electron configurations from history,[6] and Lev Landau and Evgeny Lifshitz already considered it incorrect in 1948.[7] Arguments can still occasionally be encountered in the contemporary literature purporting to defend it, but most authors consider them logically inconsistent.[8][9][10] Some sources follow a compromise that puts La–Lu and Ac–Lr as the f-block rows (despite that giving 15 f-block elements in each row, which contradicts quantum mechanics), leaving the heavier members of group 3 ambiguous.[5] See also Group 3 element#Composition.
d Group 18, the noble gases, were not discovered at the time of Mendeleev's original table. Later (1902), Mendeleev accepted the evidence for their existence, and they could be placed in a new "group 0", consistently and without breaking the periodic table principle.
r Group name as recommended by IUPAC.
New
IUPAC
name
Old
IUPAC
(Europe)
CAS
name
(U.S.)
Name
by element
IUPAC
recommended
trivial name
Other trivial name
Group 1 IA IA  
lithium family
hydrogen
and
alkali metals*
Group 2 IIA IIA beryllium family alkaline earth metals*
Group 3 IIIA IIIB scandium family
Group 4 IVA IVB titanium family
Group 5 VA VB vanadium family
Group 6 VIA VIB chromium family
Group 7 VIIA VIIB manganese family
Group 8 VIII VIIIB iron family
Group 9 VIII VIIIB cobalt family
Group 10 VIII VIIIB nickel family
Group 11 IB IB copper family coinage metals
Group 12 IIB IIB zinc family
Group 13 IIIB IIIA boron family triels from Greek tri (three, III)
Group 14 IVB IVA carbon family tetrels from Greek tetra (four, IV)
Group 15 VB VA nitrogen family pnictogens* pentels from Greek penta (five, V)
Group 16 VIB VIA oxygen family chalcogens*
Group 17 VIIB VIIA fluorine family halogens*
Group 18 0 VIIIA helium family
or neon family
noble gases*

Some other names have been proposed and used without gaining wide acceptance: "volatile metals" for group 12; "icosagens" for group 13; "crystallogens", "adamantogens", and "merylides" for group 14; and "aerogens" for group 18.[citation needed]

CAS and old IUPAC numbering (A/B)

Two earlier group number systems exist: CAS (Chemical Abstracts Service) and old IUPAC. Both use numerals (Arabic or Roman) and letters A and B. Both systems agree on the numbers. The numbers indicate approximately the highest oxidation number of the elements in that group, and so indicate similar chemistry with other elements with the same numeral. The number proceeds in a linearly increasing fashion for the most part, once on the left of the table, and once on the right (see List of oxidation states of the elements), with some irregularities in the transition metals. However, the two systems use the letters differently. For example, potassium (K) has one valence electron. Therefore, it is located in group 1. Calcium (Ca) is in group 2, for it contains two valence electrons.

In the old IUPAC system the letters A and B were designated to the left (A) and right (B) part of the table, while in the CAS system the letters A and B are designated to main group elements (A) and transition elements (B). The old IUPAC system was frequently used in Europe, while the CAS is most common in America. The new IUPAC scheme was developed to replace both systems as they confusingly used the same names to mean different things. The new system simply numbers the groups increasingly from left to right on the standard periodic table. The IUPAC proposal was first circulated in 1985 for public comments,[2] and was later included as part of the 1990 edition of the Nomenclature of Inorganic Chemistry.[11]

See also

References

  1. ^ "The Periodic Table Terms". www.shmoop.com. Retrieved 2018-09-15.
  2. ^ a b Fluck, E. (1988). "New Notations in the Periodic Table" (PDF). Pure Appl. Chem. 60 (3). IUPAC: 431–436. doi:10.1351/pac198860030431. Retrieved 24 March 2012.
  3. ^ IUPAC (2005). "Nomenclature of inorganic chemistry" (PDF).
  4. ^ Fluck, E. (1988). "New Notations in the Periodic Table" (PDF). Pure Appl. Chem. 60 (3): 431–436. doi:10.1351/pac198860030431. S2CID 96704008. Archived (PDF) from the original on 25 March 2012. Retrieved 24 March 2012.
  5. ^ a b Scerri, Eric (18 January 2021). "Provisional Report on Discussions on Group 3 of the Periodic Table" (PDF). Chemistry International. 43 (1): 31–34. doi:10.1515/ci-2021-0115. S2CID 231694898. Archived (PDF) from the original on 13 April 2021. Retrieved 9 April 2021.
  6. ^ William B. Jensen (1982). "The Positions of Lanthanum (Actinium) and Lutetium (Lawrencium) in the Periodic Table". J. Chem. Educ. 59 (8): 634–636. Bibcode:1982JChEd..59..634J. doi:10.1021/ed059p634.
  7. ^ L. D. Landau, E. M. Lifshitz (1958). Quantum Mechanics: Non-Relativistic Theory. Vol. 3 (1st ed.). Pergamon Press. pp. 256–7.
  8. ^ Jensen, William B. (2015). "The positions of lanthanum (actinium) and lutetium (lawrencium) in the periodic table: an update". Foundations of Chemistry. 17: 23–31. doi:10.1007/s10698-015-9216-1. S2CID 98624395. Archived from the original on 30 January 2021. Retrieved 28 January 2021.
  9. ^ Scerri, Eric (2009). "Which Elements Belong in Group 3?". Journal of Chemical Education. 86 (10): 1188. doi:10.1021/ed086p1188. Retrieved 1 January 2023.
  10. ^ Chemey, Alexander T.; Albrecht-Schmitt, Thomas E. (2019). "Evolution of the periodic table through the synthesis of new elements". Radiochimica Acta. 107 (9–11): 1–31. doi:10.1515/ract-2018-3082.
  11. ^ Leigh, G. J. Nomenclature of Inorganic Chemistry: Recommendations 1990. Blackwell Science, 1990. ISBN 0-632-02494-1.

Further reading

See also