Indium | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pronunciation | /ˈɪndiəm/ | |||||||||||||||||||||||||
Appearance | silvery lustrous gray | |||||||||||||||||||||||||
Standard atomic weight Ar°(In) | ||||||||||||||||||||||||||
Indium in the periodic table | ||||||||||||||||||||||||||
| ||||||||||||||||||||||||||
Atomic number (Z) | 49 | |||||||||||||||||||||||||
Group | group 13 (boron group) | |||||||||||||||||||||||||
Period | period 5 | |||||||||||||||||||||||||
Block | p-block | |||||||||||||||||||||||||
Electron configuration | [Kr] 4d10 5s2 5p1 | |||||||||||||||||||||||||
Electrons per shell | 2, 8, 18, 18, 3 | |||||||||||||||||||||||||
Physical properties | ||||||||||||||||||||||||||
Phase at STP | solid | |||||||||||||||||||||||||
Melting point | 429.7485 K (156.5985 °C, 313.8773 °F) | |||||||||||||||||||||||||
Boiling point | 2345 K (2072 °C, 3762 °F) | |||||||||||||||||||||||||
Density (at 20° C) | 7.290 g/cm3[3] | |||||||||||||||||||||||||
when liquid (at m.p.) | 7.02 g/cm3 | |||||||||||||||||||||||||
Triple point | 429.7445 K, ~1 kPa[4] | |||||||||||||||||||||||||
Heat of fusion | 3.281 kJ/mol | |||||||||||||||||||||||||
Heat of vaporization | 231.8 kJ/mol | |||||||||||||||||||||||||
Molar heat capacity | 26.74 J/(mol·K) | |||||||||||||||||||||||||
Vapor pressure
| ||||||||||||||||||||||||||
Atomic properties | ||||||||||||||||||||||||||
Oxidation states | −5, −2, −1, 0,[5] +1, +2, +3[6] (an amphoteric oxide) | |||||||||||||||||||||||||
Electronegativity | Pauling scale: 1.78 | |||||||||||||||||||||||||
Ionization energies |
| |||||||||||||||||||||||||
Atomic radius | empirical: 167 pm | |||||||||||||||||||||||||
Covalent radius | 142±5 pm | |||||||||||||||||||||||||
Van der Waals radius | 193 pm | |||||||||||||||||||||||||
Spectral lines of indium | ||||||||||||||||||||||||||
Other properties | ||||||||||||||||||||||||||
Natural occurrence | primordial | |||||||||||||||||||||||||
Crystal structure | body-centered tetragonal (tI2) | |||||||||||||||||||||||||
Lattice constants | a = 325.16 pm c = 494.71 pm (at 20 °C)[3] | |||||||||||||||||||||||||
Thermal expansion | 32.2×10−6/K (at 20 °C)[a] | |||||||||||||||||||||||||
Thermal conductivity | 81.8 W/(m⋅K) | |||||||||||||||||||||||||
Electrical resistivity | 83.7 nΩ⋅m (at 20 °C) | |||||||||||||||||||||||||
Magnetic ordering | diamagnetic[7] | |||||||||||||||||||||||||
Molar magnetic susceptibility | −64.0×10−6 cm3/mol (298 K)[8] | |||||||||||||||||||||||||
Young's modulus | 11 GPa | |||||||||||||||||||||||||
Speed of sound thin rod | 1215 m/s (at 20 °C) | |||||||||||||||||||||||||
Mohs hardness | 1.2 | |||||||||||||||||||||||||
Brinell hardness | 8.8–10.0 MPa | |||||||||||||||||||||||||
CAS Number | 7440-74-6 | |||||||||||||||||||||||||
History | ||||||||||||||||||||||||||
Discovery | Ferdinand Reich and Hieronymous Theodor Richter (1863) | |||||||||||||||||||||||||
First isolation | Hieronymous Theodor Richter (1864) | |||||||||||||||||||||||||
Isotopes of indium | ||||||||||||||||||||||||||
| ||||||||||||||||||||||||||
Indium is a chemical element with symbol In and atomic number 49. It is a post-transition metallic element that is rare in Earth's crust. The metal is very soft, malleable and easily fusible, with a melting point higher than sodium, but lower than lithium or tin. Chemically, indium is similar to gallium and thallium, and it is largely intermediate between the two in terms of its properties.[10] It has no obvious role in biological processes, and its common compounds are not toxic. It is most notably used in low-melting-point metal alloys such as solders, in soft-metal high-vacuum seals, and in the production of transparent conductive coatings of indium tin oxide (ITO) on glass.
Indium is a very soft, silvery-white, highly ductile, relatively rare post-transition metal with a bright luster.[11] It is so soft (Mohs hardness 1.2) that the metal can be cut with a knife, as can sodium. It also leaves a visible line on paper.[12] Like tin, when it is bent, indium emits a high-pitched "cry".[11] Like gallium, indium is able to wet glass. Like both, indium has a low melting point, 156.60 °C (313.88 °F); higher than its lighter homologue, gallium, but lower than its heavier homologue, thallium, and lower than tin. Only mercury, gallium, and most of the alkali metals have lower melting points.[13] Its boiling point is 2072 °C (3762 °F), higher than that of thallium, but lower than that of gallium, showing opposition to the melting points' trend. Indium thus has a very large liquid range of around 2000 °C. The density of indium, 7.31 g/cm3, is also higher than that of gallium, but lower than that of thallium. Below its critical temperature of 3.41 K, indium becomes a superconductor. At standard temperature and pressure, indium crystallizes in the tetragonal crystal system in the space group I4/mmm (lattice parameters: a = 325 pm, c = 495 pm).[13]
Indium metal does not react with water, but it is oxidized by stronger oxidizing agents such as halogens to give indium(III) compounds. It does not form a boride, silicide or carbide, and the hydride InH3 has only a transitory existence, even at low temperatures, before reverting to the elements.[14]
Indium has 39 known isotopes, ranging in mass from 97 to 135. Only two isotopes occur naturally in primordial nuclides: indium-113, the only stable isotope, and indium-115, which has a half-life of 4.41×1014 years, four orders of magnitude longer than the age of the universe and nearly 50,000 times longer than that of natural thorium.[15] Indium-115 makes up 95.7% of all indium.
The most stable artificial indium isotope is indium-111, which has half-life of approximately 2.8 days. All other isotopes have half-lives shorter than 5 hours. Indium also has 47 meta states, among which indium-114m1 is the most stable, being more stable than the ground state of any indium isotope other than the primordial ones.
Indium is a post-transition metal and chemically, is the intermediate element between its group 13 neighbors gallium and thallium.
Indium has 49 electrons, having an electronic configuration of [Kr]4d105s25p1. In its compounds, indium most commonly loses its three outermost electrons, becoming indium(III) ions, In3+, but in some cases the pair of 5s-electrons do not ionize, resulting in indium(I), In+. The stabilization of the monovalent state is attributed to the inert pair effect, the stabilization of 5s-orbital due to relativistic effects, which are greater for heavier elements. Thallium (indium's heavier homolog) shows an even stronger effect, making oxidation to thallium(I) more likely than to thallium(III), making +1 the more likely oxidation state,[16] whereas gallium (indium's lighter homolog) commonly shows only the +3 oxidation state. Thus, although thallium(III) is a moderately strong oxidizing agent, indium(III) is not, and indium(I) compounds are often powerful reducing agents.[14]
A number of standard electrode potentials, depending on the reaction under study,[17] are reported for indium:
−0.40 | In2+ + e− | ↔ In+ |
−0.49 | In3+ + e− | ↔ In2+ |
−0.443 | In3+ + 2 e− | ↔ In+ |
−0.3382 | In3+ + 3 e− | ↔ In |
−0.14 | In+ + e− | ↔ In |
Indium(III) oxide forms when the element is burned in air or when the hydroxide or nitrate is heated. In2O3 adopts a structure like alumina. It is amphoteric, i.e., it can react with both acids and bases. Its reaction with water results in insoluble indium(III) hydroxide, which is also amphoteric, reacting with alkalis to give indates(III) and with acids to give indium(III) salts:
Indium forms the expected trihalides. Chlorination, bromination, and iodination of In gives, respectively, colorless InCl3 and InBr3, and yellow InI3. The compounds are Lewis acids, somewhat akin to the better known aluminium trihalides. Again like the related aluminium compound, InF3 is polymeric.
See also Indium halides
Indium(I) compounds are not common. The chloride, bromide, and iodide are deeply colored, unlike the parent trihalides from which they are prepared. Other In(I) compounds include a sulfide. Indium(I) sulfide is the product of reaction between indium and sulfur or indium and hydrogen sulfide, and can be received at 700—1000 °C. Indium(I) oxide black powder is received at 850 °C during reaction between indium and carbon dioxide or during decomposition of indium(III) oxide at 1200 °C. Cyclopentadienylindium(I), which was the first organoindium(I) compound reported,[18] is polymer consisting of zigzag chains of alternating indium atoms and cyclopentadienyl complexes.
Less frequently, indium forms compounds in oxidation state +2 and even fractional oxidation states. Usually such materials feature In–In bonding, most notably in halides, In2X4 and [In2X6]2−.[19] Several other compounds are known to combine indium(I) and indium(III), such as InI6(InIIICl6)Cl3,[20] InI5(InIIIBr4)2(InIIIBr6),[21] InIInIIIBr4.[19] In organic synthesis it is used for indium-mediated allylation.
Organoindium compounds feature In-C bonds. Most are In(III) derivatives, but cyclopentadienylindium(I) is an exception. Perhaps best known is trimethylindium, In(CH3)3, which is used to prepare certain semiconducting materials.
Indium has no metabolic role in any organism. In a similar way to aluminium salts, indium(III) ions can be toxic to the kidney when given by injection, but oral indium compounds do not have the chronic toxicity of salts of heavy metals, probably due to poor absorption in basic conditions. Radioactive indium-111 (in very small amounts on a chemical basis) is used in nuclear medicine tests, as a radiotracer to follow the movement of labeled proteins and white blood cells in the body.
In 1863, the German chemists Ferdinand Reich and Hieronymous Theodor Richter were testing ores from the mines around Freiberg, Saxony. They dissolved the minerals pyrite, arsenopyrite, galena and sphalerite in hydrochloric acid and distilled raw zinc chloride. As it was known that ores from that region sometimes contain thallium they searched for the green emission lines with spectroscopy. The green lines were absent but a blue line was present in the spectrum. As no element was known with a bright blue emission they concluded that a new element was present in the minerals. They named the element with the blue spectral line indium, from the indigo color seen in its spectrum, after the Latin indicum.[22][23][24] Zinc ores remain the primary source of indium, as zinc and indium have similar atomic radii.[25] Richter went on to isolate the metal in 1864.[26] At the World Fair 1867 an ingot of 0.5 kg (1.1 lb) was presented.[27]
In 1924, indium was found to have a valued ability to stabilize non-ferrous metals, which was the first significant use for the element.[28] It took until 1936 for the U.S. Bureau of Mines to list indium as a commodity, and even in the early 1950s only very limited applications for indium were known, the most important of which was making light-emitting diodes and coating bearings for aircraft engines during World War II. The start of production of indium-containing semiconductors started in 1952. The development and widespread use of indium-containing nuclear control rods increased demand during the 1970s, and the use of indium tin oxide in liquid crystal displays increased and became the major application by 1992.[29][30][31][32][33]
Currently the demand for indium is driven by the manufacture of transparent electrodes from indium tin oxide (ITO).[citation needed] The electrodes are used in liquid crystal displays and touchscreens. The metal also is used in a wide range of alloys;[34] one of its first large-volume applications was in high-performance bearing alloys (for aircraft) in WWII. It is also used for making particularly low melting point alloys, and is a component in some solders. One of its unusual attributes is that, like gallium, molten indium wets glass, so that it can be used as a solder in glass seals. It also is used in a wide range of electric and electronic roles, and has been used in superconducting alloys.
Indium is created by the long-lasting (up to thousands of years) s-process in low-to-medium-mass stars (which range in mass between 0.6 and 10 solar masses). When a silver-109 atom (the isotope of which approximately half of all silver in existence is composed) catches a neutron, it undergoes a beta decay to become cadmium-110. Capturing further neutrons, it becomes cadmium-115, which decays to indium-115 by another beta decay. This explains why the radioactive isotope predominates in abundance compared to the stable one.[35]
In Earth's crust, indium occurs only in the form of its compounds, except occasionally as rare grains of free metal of no commercial importance.[36] Indium is 68th most abundant element in Earth's crust at approximately 160 ppb, making indium approximately as abundant as cadmium.[37] Fewer than 10 indium minerals are known, such as dzhalindite (In(OH)3) and indite (FeIn2S4),[38] but none of these occurs in significant deposits.
Indium tends to be found together with zinc in its sulfide minerals, because the two elements have similar atomic radii.[25] Based on content of indium in zinc ore stocks, there is a worldwide reserve of approximately 6,000 tonnes of economically viable indium.[39] However, the Indium Corporation, the largest processor of indium, claims that, on the basis of increasing recovery yields during extraction, recovery from a wider range of base metals (including tin, copper and other polymetallic deposits) and new mining investments, the long-term supply of indium is sustainable, reliable, and sufficient to meet increasing future demands.[40] This conclusion may be reasonable, considering that silver, which is one-third as abundant as indium in Earth's crust,[41] is currently mined at approximately 18,300 tonnes per year,[42] which is 40 times greater than current indium mining rates.
The lack of indium mineral deposits and the fact that indium is enriched in sulfidic lead, tin, copper, iron and predominately in zinc deposits, makes zinc production the main source for indium. The indium is leached from slag and dust of zinc production. Further purification is done by electrolysis. The exact process varies with the exact composition of the slag and dust.[11][27]
Indium is produced mainly from residues generated during zinc ore processing but is also found in iron, lead, and copper ores.[11] China is a leading producer of indium (390 tonnes in 2012), followed by Canada, Japan and South Korea with 70 tonnes each.[44] The Teck Cominco refinery in Trail, British Columbia, is a large single-source indium producer, with an output of 32.5 tonnes in 2005, 41.8 tonnes in 2004 and 36.1 tonnes in 2003. South American Silver Corporation's Malku Khota property in Bolivia is a large resource of indium with an indicated resource of 1,481 tonnes and inferred resource of 935 tonnes.[45] Adex Mining Inc.’s Mount Pleasant Mine in New Brunswick, Canada, holds some of the world’s total known indium resources.[46]
The amount of indium consumed is largely a function of worldwide LCD production. Worldwide production in 2007 was 475 tonnes per year from mining and a further 650 tonnes per year from recycling.[40] Demand has risen rapidly in recent years with the popularity of LCD computer monitors and television sets, which now account for 50% of indium consumption.[47] Increased manufacturing efficiency and recycling (especially in Japan) maintain a balance between demand and supply. According to the UNEP, indium's end-of-life recycling rate is less than 1%.[48] Demand increased as the metal is used in LCDs and televisions, and supply decreased when a number of Chinese mining concerns stopped extracting indium from their zinc tailings. In 2002, the price was US$94 per kilogram. The recent changes in demand and supply have resulted in high and fluctuating prices of indium, which from 2006 to 2009 ranged from US$382/kg to US$918/kg.
It has been estimated that there are fewer than 14 years left of indium supplies, based on current rates of extraction, demonstrating the need for additional recycling.[49]
The first large-scale application for indium was as a coating for bearings in high-performance aircraft engines during World War II. Afterward, production gradually increased when new uses were found in fusible alloys, solders, and electronics. In the 1950s, tiny beads of it were used for the emitters and collectors of PNP alloy-junction transistors. In the middle and late 1980s, the development of indium phosphide semiconductors and indium tin oxide thin films for liquid-crystal displays (LCD) aroused much interest. By 1992, the thin-film application had become the largest end use.[50][51]
The health effects of exposure to indium have been little studied. The EU does not consider it a chemical of "high concern". Indium tin oxide and indium phosphide have been shown to cause harm to the pulmonary and immune systems, predominantly through ionic indium.[70] Mild eye irritation may result from exposure to its dust or vapor. Lab studies in animals have shown that injection of indium salts may cause liver and kidney damage. Because of its rarity, little is known about its ecological fate, and bioaccumulation has not been ruled out.
People can be exposed to indium in the workplace by breathing it in, swallowing it, skin contact, and eye contact. The National Institute for Occupational Safety and Health has set a recommended exposure limit (REL) of 0.1 mg/m3 over an 8-hour workday.[71]
((cite web))
: Unknown parameter |deadurl=
ignored (|url-status=
suggested) (help)
((cite web))
: Unknown parameter |deadurl=
ignored (|url-status=
suggested) (help)
((cite web))
: Unknown parameter |deadurl=
ignored (|url-status=
suggested) (help)
((cite journal))
: Cite journal requires |journal=
(help)
((cite journal))
: Unknown parameter |authors=
ignored (help)
((cite book))
: CS1 maint: numeric names: authors list (link)
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Indium(I) |
| ||
---|---|---|---|
Indium(I,III) | |||
Indium(III) |
|
Cite error: There are <ref group=lower-alpha>
tags or ((efn))
templates on this page, but the references will not show without a ((reflist|group=lower-alpha))
template or ((notelist))
template (see the help page).