This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: "Mobile cloud computing" – news · newspapers · books · scholar · JSTOR (September 2011) (Learn how and when to remove this message)

Mobile Cloud Computing (MCC) is the combination of cloud computing and mobile computing to bring rich computational resources to mobile users, network operators, as well as cloud computing providers.[1][2][3] The ultimate goal of MCC is to enable execution of rich mobile applications on a plethora of mobile devices, with a rich user experience.[4] MCC provides business opportunities for mobile network operators as well as cloud providers.[5][6] More comprehensively, MCC can be defined as "a rich mobile computing technology that leverages unified elastic resources of varied clouds and network technologies toward unrestricted functionality, storage, and mobility to serve a multitude of mobile devices anywhere, anytime through the channel of Ethernet or Internet regardless of heterogeneous environments and platforms based on the pay-as-you-use principle."[7]

Architecture

Mobile cloud architecture

MCC uses computational augmentation approaches (computations are executed remotely instead of on the device) by which resource-constraint mobile devices can utilize computational resources of varied cloud-based resources.[2] In MCC, there are four types of cloud-based resources, namely distant immobile clouds, proximate immobile computing entities, proximate mobile computing entities, and hybrid (combination of the other three model).[2][5] Giant clouds such as Amazon EC2 are in the distant immobile groups whereas cloudlet or surrogates are member of proximate immobile computing entities. Smartphones, tablets, handheld devices, and wearable computing devices are part of the third group of cloud-based resources which is proximate mobile computing entities.[5][8]

Vodafone,[9] Orange and Verizon have started to offer cloud computing services for companies.

Challenges

In the MCC landscape, an amalgam of mobile computing, cloud computing, and communication networks (to augment smartphones) creates several complex challenges such as Mobile Computation Offloading, Seamless Connectivity, Long WAN Latency, Mobility Management, Context-Processing, Energy Constraint, Vendor/data Lock-in, Security and Privacy,[10] Elasticity that hinder MCC success and adoption.[5][7]

Open research issues

Although significant research and development in MCC is available in the literature, efforts in the following domains is still lacking:[3][7]

MCC research groups and activities

Several academic and industrial research groups in MCC have been emerging since last few years. Some of the MCC research groups in academia with large number of researchers and publications include:

See also

References

  1. ^ Khan, A. u R.; Othman, M.; Madani, S. A.; Khan, S. U. (2014-01-01). "A Survey of Mobile Cloud Computing Application Models". IEEE Communications Surveys and Tutorials. 16 (1): 393–413. CiteSeerX 10.1.1.402.1725. doi:10.1109/SURV.2013.062613.00160. ISSN 1553-877X. S2CID 3042864.
  2. ^ a b c Abolfazli, Saeid; Sanaei, Zohreh; Ahmed, Ejaz; Gani, Abdullah; Buyya, Rajkumar (1 July 2013). "Cloud-Based Augmentation for Mobile Devices: Motivation, Taxonomies, and Open Challenges". IEEE Communications Surveys & Tutorials. 99 (pp): 337–368. arXiv:1306.4956. Bibcode:2013arXiv1306.4956A. doi:10.1109/SURV.2013.070813.00285. S2CID 5322364.
  3. ^ a b Fangming Liu, Peng Shu, Hai Jin, Linjie Ding, Jie Yu, Di Niu, Bo Li, "Gearing Resource-Poor Mobile Devices with Powerful Clouds: Architecture, Challenges and Applications Archived 2016-03-04 at the Wayback Machine", IEEE Wireless Communications Magazine, Special Issue on Mobile Cloud Computing, vol. 20, no. 3, pp.14-22, June, 2013.
  4. ^ Abolfazli, Saeid; Sanaei, Zohreh; Gani, Abdullah; Xia, Feng; Yang, Laurence T. (1 September 2013). "Rich Mobile Applications: Genesis, taxonomy, and open issues". Journal of Network and Computer Applications. 40: 345–362. doi:10.1016/j.jnca.2013.09.009.
  5. ^ a b c d Khan, A. u R.; Othman, M.; Xia, F.; Khan, A. N. (2015-05-01). "Context-Aware Mobile Cloud Computing and Its Challenges". IEEE Cloud Computing. 2 (3): 42–49. doi:10.1109/MCC.2015.62. ISSN 2325-6095. S2CID 16019778.
  6. ^ Dinh, Hoang T. (2013). "A survey of mobile cloud computing: architecture, applications, and approaches". Wireless Communications and Mobile Computing. 13 (18): 1587–1611. doi:10.1002/wcm.1203.
  7. ^ a b c Sanaei, Zohreh; Abolfazli, Saeid; Gani, Abdullah; Buyya, Rajkumar (1 January 2013). "Heterogeneity in Mobile Cloud Computing: Taxonomy and Open Challenges" (PDF). IEEE Communications Surveys & Tutorials. 16 (99): 369–392. doi:10.1109/SURV.2013.050113.00090. S2CID 8751555.
  8. ^ Fernando, Niroshinie; Seng W. Loke; Wenny Rahayu (2013). "Mobile cloud computing: A survey". Future Generation Computer Systems. 29: 84–106. doi:10.1016/j.future.2012.05.023.
  9. ^ "Archived copy" (PDF). Archived from the original (PDF) on 2011-06-26. Retrieved 2011-07-29.((cite web)): CS1 maint: archived copy as title (link)
  10. ^ a b c Khan, Atta ur Rehman; Othman, Mazliza; Ali, Mazhar; Khan, Abdul Nasir; Madani, Sajjad Ahmad (2013-12-01). "Pirax: framework for application piracy control in mobile cloud environment". The Journal of Supercomputing. 68 (2): 753–776. doi:10.1007/s11227-013-1061-1. ISSN 0920-8542. S2CID 14880069.
  11. ^ Peng Shu, Fangming Liu, Hai Jin, Min Chen, Feng Wen, Yupeng Qu, Bo Li, "eTime: Energy-Efficient Transmission between Cloud and Mobile Devices", in Proc. of IEEE INFOCOM (Mini-conference), Italy, April, 2013.
  12. ^ Fangming Liu, Peng Shu, "eTime: Energy-Efficient Mobile Cloud Computing for Rich-Media Applications", IEEE COMSOC MMTC E-Letter (IEEE Communications Society, Multimedia Communications Technical Committee), vol. 8, no. 1, January 2013.
  13. ^ a b "MDCRG". King Saud University.
  14. ^ "ICCLAB". Archived from the original on 2013-08-17. Retrieved 2013-08-17.
  15. ^ "Mobile and Cloud Computing Laboratory (Mobile & Cloud Lab)". University of Tartu.
  16. ^ "SmartLab Smartphone Programming Cloud Testbed". University of Cyprus.
  17. ^ "MCN". www.mobile-cloud-networking.eu. Retrieved 2017-09-06.
  18. ^ "Home". Service Engineering (ICCLab & SPLab). Retrieved 2017-09-06.
  19. ^ "Willkommen an der ZHAW | ZHAW Zürcher Hochschule für Angewandte Wissenschaften". ZHAW Zürcher Hochschule für Angewandte Wissenschaften (in German). Retrieved 2017-09-06.