The pyrolysis (or devolatilization) process is the thermal decomposition of materials at elevated temperatures in an inert atmosphere.[1] It involves a change of chemical composition. The word is coined from the Greek-derived elements pyro "fire", "heat", "fever" and lysis "separating".
Pyrolysis is most commonly used in the treatment of organic materials. It is one of the processes involved in charring wood.[2] In general, pyrolysis of organic substances produces volatile products and leaves char, a carbon-rich solid residue. Extreme pyrolysis, which leaves mostly carbon as the residue, is called carbonization. Pyrolysis is considered the first step in the processes of gasification or combustion.[3][4]
The process is used heavily in the chemical industry, for example, to produce ethylene, many forms of carbon, and other chemicals from petroleum, coal, and even wood, to produce coke from coal. It is used also in the conversion of natural gas (primarily methane) into non-polluting hydrogen gas and non-polluting solid carbon char, recently on an industrial scale.[5] Aspirational applications of pyrolysis would convert biomass into syngas and biochar, waste plastics back into usable oil, or waste into safely disposable substances.
Pyrolysis is one of the various types of chemical degradation processes that occur at higher temperatures (above the boiling point of water or other solvents). It differs from other processes like combustion and hydrolysis in that it usually does not involve the addition of other reagents such as oxygen (O2, in combustion) or water (in hydrolysis).[6] Pyrolysis produces solids (char), condensable liquids (tar), and uncondensing/permanent gasses.[7][8][9][10]
Complete pyrolysis of organic matter usually leaves a solid residue that consists mostly of elemental carbon; the process is then called carbonization. More specific cases of pyrolysis include:
Pyrolysis generally consists in heating the material above its decomposition temperature, breaking chemical bonds in its molecules. The fragments usually become smaller molecules, but may combine to produce residues with larger molecular mass, even amorphous covalent solids.
In many settings, some amounts of oxygen, water, or other substances may be present, so that combustion, hydrolysis, or other chemical processes may occur besides pyrolysis proper. Sometimes those chemicals are added intentionally, as in the burning of firewood, in the traditional manufacture of charcoal, and in the steam cracking of crude oil.
Conversely, the starting material may be heated in a vacuum or in an inert atmosphere to avoid chemical side reactions (such as combustion or hydrolysis). Pyrolysis in a vacuum also lowers the boiling point of the byproducts, improving their recovery.
When organic matter is heated at increasing temperatures in open containers, the following processes generally occur, in successive or overlapping stages:
Pyrolysis has many applications in food preparation.[13] Caramelization is the pyrolysis of sugars in food (often after the sugars have been produced by the breakdown of polysaccharides). The food goes brown and changes flavor. The distinctive flavors are used in many dishes; for instance, caramelized onion is used in French onion soup.[14][15] The temperatures needed for caramelization lie above the boiling point of water.[14] Frying oil can easily rise above the boiling point. Putting a lid on the frying pan keeps the water in, and some of it re-condenses, keeping the temperature too cool to brown for longer time.
Pyrolysis of food can also be undesirable, as in the charring of burnt food (at temperatures too low for the oxidative combustion of carbon to produce flames and burn the food to ash).
Carbon and carbon-rich materials have desirable properties but are nonvolatile, even at high temperatures. Consequently, pyrolysis is used to produce many kinds of carbon; these can be used for fuel, as reagents in steelmaking (coke), and as structural materials.
Charcoal is a less smoky fuel than pyrolyzed wood.[16] Some cities ban, or used to ban, wood fires; when residents only use charcoal (and similarly-treated rock coal, called coke) air pollution is significantly reduced. In cities where people do not generally cook or heat with fires, this is not needed. In the mid-20th century, "smokeless" legislation in Europe required cleaner-burning techniques, such as coke fuel[17] and smoke-burning incinerators[18] as an effective measure to reduce air pollution[17]
The coke-making or "coking" process consists of heating the material in "coking ovens" to very high temperatures (up to 900 °C or 1,700 °F) so that the molecules are broken down into lighter volatile substances, which leave the vessel, and a porous but hard residue that is mostly carbon and inorganic ash. The amount of volatiles varies with the source material, but is typically 25–30% of it by weight. High temperature pyrolysis is used on an industrial scale to convert coal into coke. This is useful in metallurgy, where the higher temperatures are necessary for many processes, such as steelmaking. Volatile by-products of this process are also often useful, including benzene and pyridine.[19] Coke can also be produced from the solid residue left from petroleum refining.
The original vascular structure of the wood and the pores created by escaping gases combine to produce a light and porous material. By starting with a dense wood-like material, such as nutshells or peach stones, one obtains a form of charcoal with particularly fine pores (and hence a much larger pore surface area), called activated carbon, which is used as an adsorbent for a wide range of chemical substances.
Biochar is the residue of incomplete organic pyrolysis, e.g., from cooking fires. It is a key component of the terra preta soils associated with ancient indigenous communities of the Amazon basin.[20] Terra preta is much sought by local farmers for its superior fertility and capacity to promote and retain an enhanced suite of beneficial microbiota, compared to the typical red soil of the region. Efforts are underway to recreate these soils through biochar, the solid residue of pyrolysis of various materials, mostly organic waste.
Carbon fibers are filaments of carbon that can be used to make very strong yarns and textiles. Carbon fiber items are often produced by spinning and weaving the desired item from fibers of a suitable polymer, and then pyrolyzing the material at a high temperature (from 1,500–3,000 °C or 2,730–5,430 °F). The first carbon fibers were made from rayon, but polyacrylonitrile has become the most common starting material. For their first workable electric lamps, Joseph Wilson Swan and Thomas Edison used carbon filaments made by pyrolysis of cotton yarns and bamboo splinters, respectively.
Pyrolysis is the reaction used to coat a preformed substrate with a layer of pyrolytic carbon. This is typically done in a fluidized bed reactor heated to 1,000–2,000 °C or 1,830–3,630 °F. Pyrolytic carbon coatings are used in many applications, including artificial heart valves.[21]
See also: Biofuel |
Pyrolysis is the basis of several methods for producing fuel from biomass, i.e. lignocellulosic biomass.[22] Crops studied as biomass feedstock for pyrolysis include native North American prairie grasses such as switchgrass and bred versions of other grasses such as Miscantheus giganteus. Other sources of organic matter as feedstock for pyrolysis include greenwaste, sawdust, waste wood, leaves, vegetables, nut shells, straw, cotton trash, rice hulls, and orange peels.[3] Animal waste including poultry litter, dairy manure, and potentially other manures are also under evaluation. Some industrial byproducts are also suitable feedstock including paper sludge, distillers grain,[23] and sewage sludge.[24]
In the biomass components, the pyrolysis of hemicellulose happens between 210 and 310 °C.[3] The pyrolysis of cellulose starts from 300–315 °C and ends at 360–380 °C, with a peak at 342–354 °C.[3] Lignin starts to decompose at about 200 °C and continues until 1000 °C.[25]
Synthetic diesel fuel by pyrolysis of organic materials is not yet economically competitive.[26] Higher efficiency is sometimes achieved by flash pyrolysis, in which finely divided feedstock is quickly heated to between 350 and 500 °C (660 and 930 °F) for less than two seconds.
Syngas is usually produced by pyrolysis.[13]
The low quality of oils produced through pyrolysis can be improved by physical and chemical processes,[27] which might drive up production costs, but may make sense economically as circumstances change.
There is also the possibility of integrating with other processes such as mechanical biological treatment and anaerobic digestion.[28] Fast pyrolysis is also investigated for biomass conversion.[29] Fuel bio-oil can also be produced by hydrous pyrolysis.
Methane pyrolysis[30] is a industrial process for "turquoise" hydrogen production from methane by removing solid carbon from natural gas.[31] This one-step process produces hydrogen in high volume at low cost (less than steam reforming with carbon sequestration).[32] Only water is released when hydrogen is used as the fuel for fuel-cell electric heavy truck transportation, [33][34][35][36][37] gas turbine electric power generation,[38][39] and hydrogen for industrial processes including producing ammonia fertilizer and cement.[40][41] Methane pyrolysis is the process operating around 1065 °C for producing hydrogen from natural gas that allows removal of carbon easily (solid carbon is a byproduct of the process).[42][43] The industrial quality solid carbon can then be sold or landfilled and is not released into the atmosphere, avoiding emission of greenhouse gas (GHG) or ground water pollution from a landfill. In 2015, a company called Monolith Materials built a pilot plant in Redwood City, CA to study scaling Methane Pyrolysis using renewable power in the process.[44] A successful pilot project then led to a larger commercial scale demonstration plant in Hallam, Nebraska in 2016.[45] As of 2020, this plant is operational and can produce around 14 metric tons of hydrogen per day. In 2021, the US Department of Energy backed Monolith Materials’ plans for major expansion with a $1B loan guarantee.[46] The funding will help produce a plant capable of generating 164 metric tons of hydrogen per day by 2024. Volume production is also being evaluated in the BASF "methane pyrolysis at scale" pilot plant,[47] the chemical engineering team at University of California - Santa Barbara[48] and in such research laboratories as Karlsruhe Liquid-metal Laboratory (KALLA).[49] Power for process heat consumed is only one seventh of the power consumed in the water electrolysis method for producing hydrogen.[50]
Pyrolysis is used to produce ethylene, the chemical compound produced on the largest scale industrially (>110 million tons/year in 2005). In this process, hydrocarbons from petroleum are heated to around 600 °C (1,112 °F) in the presence of steam; this is called steam cracking. The resulting ethylene is used to make antifreeze (ethylene glycol), PVC (via vinyl chloride), and many other polymers, such as polyethylene and polystyrene.[51]
The process of metalorganic vapour-phase epitaxy (MOCVD) entails pyrolysis of volatile organometallic compounds to give semiconductors, hard coatings, and other applicable materials. The reactions entail thermal degradation of precursors, with deposition of the inorganic component and release of the hydrocarbons as gaseous waste. Since it is an atom-by-atom deposition, these atoms organize themselves into crystals to form the bulk semiconductor. Silicon chips are produced by the pyrolysis of silane:
Gallium arsenide, another semiconductor, forms upon co-pyrolysis of trimethylgallium and arsine.
See also: Thermal depolymerization |
Pyrolysis can also be used to treat municipal solid waste and plastic waste.[4][12][52] The main advantage is the reduction in volume of the waste. In principle, pyrolysis will regenerate the monomers (precursors) to the polymers that are treated, but in practice the process is neither a clean nor an economically competitive source of monomers.[53][54][55]
In tire waste management, tire pyrolysis is a well-developed technology.[56] Other products from car tire pyrolysis include steel wires, carbon black and bitumen.[57] The area faces legislative, economic, and marketing obstacles.[58] Oil derived from tire rubber pyrolysis has a high sulfur content, which gives it high potential as a pollutant and should be desulfurized.[59][60]
Alkaline pyrolysis of sewage sludge at low temperature of 500 °C can enhance H2 production with in-situ carbon capture. The use of NaOH (sodium hydroxide) has the potential to produce H2-rich gas that can be used for fuels cells directly.[24][61]
In early November 2021, the U.S. State of Georgia announced a joint effort with Igneo Technologies to build an $85 million large electronics recycling plant in the Port of Savannah. The project will focus on lower-value, plastics-heavy devices in the waste stream using multiple shredders and furnaces using pyrolysis technology.[62]
See also: Thermal cleaning |
Pyrolysis is also used for thermal cleaning, an industrial application to remove organic substances such as polymers, plastics and coatings from parts, products or production components like extruder screws, spinnerets[63] and static mixers. During the thermal cleaning process, at temperatures between 310 C° to 540 C° (600 °F to 1000 °F),[64] organic material is converted by pyrolysis and oxidation into volatile organic compounds, hydrocarbons and carbonized gas.[65] Inorganic elements remain.[66]
Several types of thermal cleaning systems use pyrolysis:
Pyrolysis is used in the production of chemical compounds, mainly, but not only, in the research laboratory.
The area of boron-hydride clusters started with the study of the pyrolysis of diborane (B2H6) at ca. 200 °C. Products include the clusters pentaborane and decaborane. These pyrolyses involve not only cracking (to give H2), but also recondensation.[72]
The synthesis of nanoparticles,[73] zirconia[74] and oxides[75] utilizing an ultrasonic nozzle in a process called ultrasonic spray pyrolysis (USP).
Polycyclic aromatic hydrocarbons (PAHs) can be generated from the pyrolysis of different solid waste fractions,[10] such as hemicellulose, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET). PS, PVC, and lignin generate significant amount of PAHs. Naphthalene is the most abundant PAH among all the polycyclic aromatic hydrocarbons.[76]
When the temperature is increased from 500 to 900 °C, most PAHs increase. With increasing temperature, the percentage of light PAHs decreases and the percentage of heavy PAHs increases.[77][78]
Thermogravimetric analysis (TGA) is one of the most common techniques to investigate pyrolysis with no limitations of heat and mass transfer. The results can be used to determine mass loss kinetics.[3][12][4][25][52] Activation energies can be calculated using the Kissinger method or peak analysis-least square method (PA-LSM).[4][25]
TGA can couple with Fourier-transform infrared spectroscopy (FTIR) and mass spectrometry. As the temperature increases, the volatiles generated from pyrolysis can be measured.[79][61]
In TGA, the sample is loaded first before the increase of temperature, and the heating rate is low (less than 100 °C min−1). Macro-TGA can use gram-scale samples, which can be used to investigate the pyrolysis with mass and heat transfer effects.[4][80]
Pyrolysis mass spectrometry (Py-GC-MS) is an important laboratory procedure to determine the structure of compounds.[81][82]
Pyrolysis has been used for turning wood into charcoal since ancient times. In their embalming process, the ancient Egyptians used methanol, which they obtained from the pyrolysis of wood. The dry distillation of wood remained the major source of methanol into the early 20th century.[83]
Pyrolysis was instrumental in the discovery of many important chemical substances, such as phosphorus (from ammonium sodium hydrogen phosphate NH4NaHPO4 in concentrated urine) and oxygen (from mercuric oxide and various nitrates).