Matrix whose conjugate transpose is its negative (additive inverse)
In linear algebra, a square matrix with complex entries is said to be skew-Hermitian or anti-Hermitian if its conjugate transpose is the negative of the original matrix.[1] That is, the matrix
is skew-Hermitian if it satisfies the relation
where
denotes the conjugate transpose of the matrix
. In component form, this means that
for all indices
and
, where
is the element in the
-th row and
-th column of
, and the overline denotes complex conjugation.
Skew-Hermitian matrices can be understood as the complex versions of real skew-symmetric matrices, or as the matrix analogue of the purely imaginary numbers.[2] The set of all skew-Hermitian
matrices forms the
Lie algebra, which corresponds to the Lie group U(n). The concept can be generalized to include linear transformations of any complex vector space with a sesquilinear norm.
Note that the adjoint of an operator depends on the scalar product considered on the
dimensional complex or real space
. If
denotes the scalar product on
, then saying
is skew-adjoint means that for all
one has
.
Imaginary numbers can be thought of as skew-adjoint (since they are like
matrices), whereas real numbers correspond to self-adjoint operators.
Example
For example, the following matrix is skew-Hermitian

because
