This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: "Supercharger" – news · newspapers · books · scholar · JSTOR (October 2014) (Learn how and when to remove this template message)
Roots type supercharger on an AMC V8 engine for drag racing.
1934 Mercedes-Benz W25 (0:35) 1934 Mercedes-Benz W25 supercharged Straight-8 at Goodwood Festival of Speed 2009 Problems playing this file? See media help.

A supercharger is an air compressor that increases the pressure or density of air supplied to an internal combustion engine. This gives each intake cycle of the engine more oxygen, letting it burn more fuel and do more work, thus increasing the power output.

Power for the supercharger can be provided mechanically by means of a belt, shaft, or chain connected to the engine's crankshaft.

Common usage restricts the term supercharger to mechanically driven units; when power is instead provided by a turbine powered by exhaust gas, a supercharger is known as a turbocharger or just a turbo—or in the past a turbosupercharger.[1]


There are two main families of superchargers defined according to the method of gas transfer: positive displacement and dynamic superchargers. Positive displacement superchargers deliver an almost constant level of boost pressure increase at all engine speeds (RPM), while dynamic superchargers cause the boost pressure to rise exponentially with RPM (above a certain RPM threshold).[2] Another family of supercharger, albeit rarely used, is the pressure wave supercharger.

Common methods of driving a supercharger include:

Positive displacement superchargers

Roots-type supercharger (right) on a 2006 GM Ecotec LSJ four-cylinder engine
Roots-type supercharger (right) on a 2006 GM Ecotec LSJ four-cylinder engine
Internals of a rotary-screw (Lysholm) supercharger
Internals of a rotary-screw (Lysholm) supercharger

Positive displacement pumps deliver a nearly fixed volume of air per revolution of the compressor (except for leakage, which typically has a reduced effect at higher engine speeds). The most common type of positive-displacement superchargers is the Roots-type supercharger. Other types include the rotary-screw, sliding vane and scroll-type superchargers.

The rating system for positive-displacement superchargers is usually based on their capacity per revolution. In the case of the Roots blower, the GMC rating pattern is typical. The GMC rating is based on how many two-stroke cylinders - and the size of those cylinders - that it is designed to scavenge, with GMC's model range including 2–71, 3–71, 4–71 and 6–71 blowers. The 6–71 blower, for example, is designed to scavenge six cylinders of 71 cu in (1.2 L) each, resulting in an engine with a total displacement of 426 cu in (7.0 L)). However, because 6–71 is the engine's designation rather than that of the blower, the actual displacement of the blower is less; for example, a 6–71 blower pumps 339 cu in (5.6 L) per revolution. Other supercharger manufacturers have produced blowers rated up to 16–71.

Dynamic superchargers

Dynamic compressors rely on accelerating the air to high speed and then exchanging that velocity for pressure by diffusing or slowing it down.

Major types of a dynamic compressor are:

Effects of fuel octane rating

Main article: Octane rating

Until the late 1920s, all automobile and aviation fuel was generally rated at 87 octane or less. This is the rating that was achieved by the simple distillation of "light crude" oil. Engines from around the world were designed to work with this grade of fuel, which set a limit to the amount of boosting that could be provided by the supercharger while maintaining a reasonable compression ratio.

Octane rating boosting through additives, such as tetraethyllead, was a line of research being explored at the time. Using these techniques, less valuable crude could still supply large amounts of useful gasoline, which made it a valuable economic process. However, the additives were not limited to making poor-quality oil into 87-octane gasoline; the same additives could also be used to boost the gasoline to much higher octane ratings.

Higher-octane fuel resists auto ignition and detonation better than low-octane fuel. As a result, the amount of boost supplied by the superchargers could be increased, resulting in an increase in engine output. The development of 100-octane aviation fuel, pioneered in the USA before the war, enabled the use of higher boost pressures to be used on high-performance aviation engines and was used to develop extremely high-power outputs – for short periods – in several of the pre-war speed record airplanes. Operational use of the new fuel during World War II began in early 1940 when 100-octane fuel was delivered to the British Royal Air Force from refineries in America and the East Indies.[3] The German Luftwaffe also had supplies of a similar fuel.[4][5]

Increasing the knocking limits of existing aviation fuels became a major focus of aero engine development during World War II. By the end of the war, fuel was being delivered at a nominal 150-octane rating, on which late-war aero engines like the Rolls-Royce Merlin 66[6][7] or the Daimler-Benz DB 605DC developed as much as 2,000 hp (1,500 kW).[8][9]

Heating of intake air

Supercharger CDT vs. ambient temperature. The graph shows how a supercharger's CDT varies with air temperature and altitude (absolute pressure).
Supercharger CDT vs. ambient temperature. The graph shows how a supercharger's CDT varies with air temperature and altitude (absolute pressure).

One disadvantage of supercharging is that compressing the air increases its temperature. When a supercharger is used on an internal combustion engine, the temperature of the fuel/air charge becomes a major limiting factor in engine performance. Extreme temperatures will cause detonation of the fuel-air mixture (spark ignition engines) and damage to the engine. In cars, this can cause a problem when it is a hot day outside, or when an excessive level of boost is reached.

It is possible to estimate the temperature rise across a supercharger by modeling it as an isentropic process.

= ambient air temperature (absolute)
= temperature after the compressor (absolute)
= ambient atmospheric pressure (absolute)
= pressure after the compressor (absolute)
= Ratio of specific heat capacities = = 1.4 for air
= Specific heat at constant pressure
= Specific heat at constant volume

For example, if a supercharged engine is pushing 10 psi (0.69 bar) of boost at sea level (ambient pressure of 14.7 psi (1.01 bar), ambient temperature of 75 °F (24 °C)), the temperature of the air after the supercharger will be 160.5 °F (71.4 °C). This temperature is known as the compressor discharge temperature (CDT) and highlights why a method for cooling the air after the compressor is so important.

Note: in the example above, the ambient air pressure (1.01 bar) is added to the boost (0.69 bar) to get total pressure (1.70 bar), which is the value used for in the equation. The temperatures must be in absolute values, using the Kelvin scale, which begins at absolute zero (0 Kelvin) and where 0 °C is 273.15 K. A Kelvin unit is the same size as a Celsius degree, so 24 °C is 273.15 K + 24 K, or simply 297.15 K.

So this means,

= 1.70 bar (24.7 psi = [14.7 psi + 10 psi boost]; or 1.70 bar = [1.01 bar + 0.69 bar])
= 1.01 bar
= 297.15K (24 K + 273.15 K; use the Kelvin scale, where 0 °C equals 273.15 Kelvin)
the exponent becomes 0.286 (or 1.4-1/[1.4]),

Resulting in:

= 344. 81 K, which is roughly 71.7 °C [344.81 K - 273.15 (since 273.15 K is 0 °C)]

Where 71.7 °C exceeds 160 °F.

While it is true that higher intake temperatures for internal combustion engines will ingest air of lower density, this holds correct only for static, unchanging air pressure. i.e. on a hot day, an engine will intake less oxygen per engine cycle than it would on a cold day. However, the heating of the air, while in the supercharger compressor, does not reduce the density of the air due to its rise in temperature. The rise in temperature is due to its rise in pressure. Energy is being added to the air and this is seen in both its energy, internal to the molecules (temperature) and of the air in static pressure, as well as the velocity of the gas.

Supercharging versus turbocharging

A G-Lader scroll-type supercharger on a Volkswagen Golf Mk1.

Keeping the air that enters the engine cool is an important part of the design of both superchargers and turbochargers. Compressing air increases its temperature, so it is common to use a small radiator called an intercooler between the pump and the engine to reduce the temperature of the air.

There are three main categories of superchargers for automotive use:

Roots blowers tend to be only 40–50% efficient at high boost levels; by contrast, centrifugal (dynamic) superchargers are 70–85% efficient at high boost. Lysholm-style blowers can be nearly as efficient as their centrifugal counterparts over a narrow range of load/speed/boost, for which the system must be specifically designed.

Mechanically driven superchargers may absorb as much as a third of the total crankshaft power of the engine and are less efficient than turbochargers. However, in applications for which engine response and power are more important than other considerations, such as top-fuel dragsters and vehicles used in tractor pulling competitions, mechanically driven superchargers are very common.

The thermal efficiency, or fraction of the fuel/air energy that is converted to output power, is less with a mechanically driven supercharger than with a turbocharger, because turbochargers use energy from the exhaust gas that would normally be wasted. For this reason, both economy and the power of a turbocharged engine are usually better than with superchargers.

Turbochargers suffer (to a greater or lesser extent) from so-called turbo-spool (turbo lag; more correctly, boost lag), in which initial acceleration from low RPM is limited by the lack of sufficient exhaust gas mass flow (pressure). Once engine RPM is sufficient to raise the turbine RPM into its designed operating range, there is a rapid increase in power, as a higher turbo boost causes more exhaust gas production, which spins the turbo yet faster, leading to a belated "surge" of acceleration. This makes the maintenance of smoothly increasing RPM far harder with turbochargers than with engine-driven superchargers, which apply boost in direct proportion to the engine RPM. The main advantage of an engine with a mechanically driven supercharger is better throttle response, as well as the ability to reach boost pressure instantaneously. With the latest turbocharging technology and direct gasoline injection, throttle response on turbocharged cars is nearly as good as with mechanically powered superchargers, but the existing lag time is still considered a major drawback, especially considering that the vast majority of mechanically driven superchargers are now driven off clutched pulleys, much like an air compressor.

Turbocharging has been more popular than superchargers among auto manufacturers owing to better power and efficiency. For instance Mercedes-Benz and Mercedes-AMG previously had supercharged "Kompressor" offerings in the early 2000s such as the C230K, C32 AMG, and S55 AMG, but they have abandoned that technology in favor of turbocharged engines released around 2010 such as the C250 and S65 AMG Biturbo. However, Audi did introduce its 3.0 TFSI supercharged V6 in 2009 for its A6, S4, and Q7, while Jaguar has its supercharged V8 engine available as a performance option in the XJ, XF, XKR, and F-Type,S-Type, and, via joint ownership by Tata motors, in the Range Rover also.


Main article: Twincharger

In the 1985 and 1986 World Rally Championships, Lancia ran the Delta S4, which incorporated both a belt-driven supercharger and exhaust-driven turbocharger. The design used a complex series of bypass valves in the induction and exhaust systems as well as an electromagnetic clutch so that, at low engine speeds, a boost was derived from the supercharger. In the middle of the rev range, a boost was derived from both systems, while at the highest revs the system disconnected the drive from the supercharger and isolated the associated ducting.[10] This was done in an attempt to exploit the advantages of each of the charging systems while removing the disadvantages. In turn, this approach brought greater complexity and affected the car's reliability in WRC events, as well as increasing the weight of engine ancillaries in the finished design.

Twincharged engines have occasionally been used in production cars, such as the 2005-2007 Volkswagen 1.4 litre and the 2017-present Volvo B4204T43/B4204T48 2.0 litre four-cylinder engines.


This section needs expansion with: usage in aircraft engines. You can help by adding to it. (May 2022)
Animation of supercharger
Animation of supercharger

In 1849, G. Jones of Birmingham, England began manufacturing a lobe pump compressor to provide ventilation for coal mines.[11] In 1860, the Roots Blower Company (founded by brothers Philander and Francis Marion Roots) in the United States patented the design for an air mover for use in blast furnaces and other industrial applications. This air mover and Birmingham's ventilation compressor both used designs similar to that of the later Roots-type superchargers.

In March of 1878, German engineer Heinrich Krigar obtained the first patent for a screw-type compressor.[12] The design was a two-lobe rotor assembly with identically-shaped rotors, however the design did not reach production.

Also in 1878, Scottish engineer Dugald Clerk designed the first supercharger which was used with an engine.[13] This supercharger was used with a two-stroke gas engine.[14] Gottlieb Daimler received a German patent for supercharging an internal combustion engine in 1885.[15] Louis Renault patented a centrifugal supercharger in France in 1902.[16][17]

The world's first series-produced cars[18] with superchargers were the 1.6 litre Mercedes 6/25 hp and 2.6 litre Mercedes 10/40 hp, both of which began production in 1923.[19] They were marketed as Kompressor models, a term which was used for various models until 2012.

In 1935, the development of screw-type superchargers reached a milestone when Swedish engineer Alf Lysholm patented a design for a rotary-screw compressor with five female and four male rotors.[12]


1929 "Blower" Bentley. The large "blower" (supercharger), located in front of the radiator, gave the car its name.
1929 "Blower" Bentley. The large "blower" (supercharger), located in front of the radiator, gave the car its name.

In 1900, Gottlieb Daimler, of Daimler-Benz (Daimler AG), was the first to patent a forced-induction system for internal combustion engines, superchargers based on the twin-rotor air-pump design, first patented by the American Francis Marion Roots in 1860, the basic design for the modern Roots type supercharger.

The first supercharged cars were introduced at the 1921 Berlin Motor Show: the 6/20 hp and 10/35 hp Mercedes. These cars went into production in 1923 as the 6/25/40 hp (regarded as the first supercharged road car[20]) and 10/40/65 hp.[21] These were normal road cars as other supercharged cars at same time were almost all racing cars, including the 1923 Fiat 805-405, 1923 Miller 122[22] 1924 Alfa Romeo P2, 1924 Sunbeam,[23] 1925 Delage,[24] and the 1926 Bugatti Type 35C. At the end of the 1920s, Bentley made a supercharged version of the Bentley 4½ Litre road car. Since then, superchargers (and turbochargers) have been widely applied to racing and production cars, although the supercharger's technological complexity and cost have largely limited it to expensive, high-performance cars.

Usage in aircraft

Altitude effects

The Rolls-Royce Merlin, a supercharged aircraft engine from World War II. The supercharger is at the rear of the engine at right
The Rolls-Royce Merlin, a supercharged aircraft engine from World War II. The supercharger is at the rear of the engine at right
A Centrifugal supercharger of a Bristol Centaurus radial aircraft engine.
A Centrifugal supercharger of a Bristol Centaurus radial aircraft engine.

Superchargers are a natural addition to aircraft piston engines that are intended for operation at high altitudes. As an aircraft climbs to a higher altitude, air pressure and air density decreases. The output of a piston engine drops because of the reduction in the mass of air that can be drawn into the engine. For example, the air density at 30,000 ft (9,100 m) is 13 of that at sea level, thus only 13 of the amount of air can be drawn into the cylinder, with enough oxygen to provide efficient combustion for only a third as much fuel. So, at 30,000 ft (9,100 m), only 13 of the fuel burnt at sea level can be burnt.[25] (An advantage of the decreased air density is that the airframe experiences only about 1/3 of the aerodynamic drag. In addition, there is decreased back pressure on the exhaust gases.[26] On the other hand, more energy is consumed holding an airplane up with less air in which to generate lift.)

A supercharger can be thought of either as artificially increasing the density of the air by compressing it or as forcing more air than normal into the cylinder every time the piston moves down on the intake stroke.[25]

A supercharger compresses the air back to sea-level-equivalent pressures, or even much higher, in order to make the engine produce just as much power at cruise altitude as it does at sea level. With the reduced aerodynamic drag at high altitude and the engine still producing rated power, a supercharged airplane can fly much faster at altitude than a naturally aspirated one. The pilot controls the output of the supercharger with the throttle and indirectly via the propeller governor control. Since the size of the supercharger is chosen to produce a given amount of pressure at high altitudes, the supercharger is oversized for low altitude. The pilot must be careful with the throttle and watch the manifold pressure gauge to avoid over-boosting at low altitude. As the aircraft climbs and the air density drops, the pilot must continuously open the throttle in small increments to maintain full power. The altitude at which the throttle reaches full open and the engine is still producing full rated power is known as the critical altitude. Above the critical altitude, engine power output will start to drop as the aircraft continues to climb.

Effects of temperature

Supercharger CDT vs. altitude. Graph shows the CDT differences between a constant-boost supercharger and a variable-boost supercharger when utilized on an aircraft.
Supercharger CDT vs. altitude. Graph shows the CDT differences between a constant-boost supercharger and a variable-boost supercharger when utilized on an aircraft.

As discussed above, supercharging can cause a spike in temperature, and extreme temperatures will cause detonation of the fuel-air mixture and damage to the engine. In the case of aircraft, this causes a problem at low altitudes, where the air is both denser and warmer than at high altitudes. With high ambient air temperatures, detonation could start to occur with the manifold pressure gauge reading far below the red line.

A supercharger optimized for high altitudes causes the opposite problem on the intake side of the system. With the throttle retarded to avoid over-boosting, air temperature in the carburetor can drop low enough to cause ice to form at the throttle plate. In this manner, enough ice could accumulate to cause engine failure, even with the engine operating at full rated power. For this reason, many supercharged aircraft featured a carburetor air temperature gauge or warning light to alert the pilot of possible icing conditions.

Several solutions to these problems were developed: intercoolers and aftercoolers, anti-detonant injection, two-speed superchargers, and two-stage superchargers.

Two-speed and two-stage superchargers

In the 1930s, two-speed drives were developed for superchargers for aero engines providing more flexible aircraft operation. The arrangement also entailed more complexity of manufacturing and maintenance. The gears connected the supercharger to the engine using a system of hydraulic clutches, which were initially manually engaged or disengaged by the pilot with a control in the cockpit. At low altitudes, the low-speed gear would be used in order to keep the manifold temperatures low. At around 12,000 feet (3,700 m), when the throttle was full forward and the manifold pressure started to drop off, the pilot would retard the throttle and switch to the higher gear, then readjust the throttle to the desired manifold pressure. Later installations automated the gear change according to atmospheric pressure.

In the Battle of Britain the Spitfire and Hurricane planes powered by the Rolls-Royce Merlin engine were equipped largely with single-stage and single speed superchargers.[27] Stanley Hooker of Rolls Royce, in order to improve the performance of the Merlin engine, developed two-speed two-stage supercharging with aftercooling with a successful application on the Rolls Royce Merlin 61 aero engine in 1942. Horsepower and performance were increased at all altitudes. Hooker's developments allowed the aircraft they powered to maintain a crucial advantage over the German aircraft they opposed throughout World War II, despite the German engines being significantly larger in displacement.[28][27] Two-stage superchargers were also always two-speed. After the air was compressed in the low-pressure stage, the air flowed through an intercooler radiator where it was cooled before being compressed again by the high-pressure stage and then possibly also aftercooled in another heat exchanger. Two-stage compressors provided much improved high altitude performance, as typified by the Rolls-Royce Merlin 61 powered Supermarine Spitfire Mk IX and the North American Mustang.

In some two-stage systems, damper doors would be opened or closed by the pilot in order to bypass one stage as needed. Some systems had a cockpit control for opening or closing a damper to the intercooler/aftercooler, providing another way to control the temperature. Rolls-Royce Merlin engines had fully automated boost control with all the pilot having to do was advance the throttle with the control system limiting boost as necessary until maximum altitude was reached.


Main article: Turbocharger

A mechanically driven supercharger has to take its drive power from the engine. Taking a single-stage single-speed supercharged engine, such as an early Rolls-Royce Merlin, for instance, the supercharger uses up about 150 hp (110 kW). Without a supercharger, the engine could produce about 750 horsepower (560 kilowatts), but with a supercharger, it produces about 1,000 hp (750 kW)—an increase of about 400 hp (750 - 150 + 400 = 1000 hp), or a net gain of 250 hp (190 kW). This is where the principal disadvantage of a supercharger becomes apparent. The engine has to burn extra fuel to provide power to drive the supercharger. The increased air density during the input cycle increases the specific power of the engine and its power-to-weight ratio, but at the cost of an increase in the specific fuel consumption of the engine. In addition to increasing the cost of running the aircraft a supercharger has the potential to reduce its overall range for a specific fuel load.

As opposed to a supercharger driven by the engine itself, a turbocharger is driven using the otherwise wasted exhaust gas from the engine. The amount of power in the gas is proportional to the difference between the exhaust pressure and air pressure, and this difference increases with altitude, helping a turbocharged engine to compensate for changing altitude. This increases the height at which maximum power output of the engine is attained compared to supercharger boosting, and allows better fuel consumption at high altitude compared to an equivalent supercharged engine. This facilitates increased true airspeed at high altitude and gives a greater operational range than an equivalently boosted engine using a supercharger.

The majority of aircraft engines used during World War II used mechanically driven superchargers because they had some significant manufacturing advantages over turbochargers. However, the benefit to the operational range was given a much higher priority to American aircraft because of a less predictable requirement on the operational range and having to travel far from their home bases. Consequently, turbochargers were mainly employed in American aircraft engines such as the Allison V-1710 and the Pratt & Whitney R-2800, which were comparably heavier when turbocharged, and required additional ducting of expensive high-temperature metal alloys in the gas turbine and a pre-turbine section of the exhaust system. The size of the ducting alone was a serious design consideration. For example, both the F4U Corsair and the P-47 Thunderbolt used the same radial engine, but the large barrel-shaped fuselage of the turbocharged P-47 was needed because of the amount of ducting to and from the turbocharger in the rear of the aircraft. The F4U used a two-stage inter-cooled supercharger with a more compact layout. Nonetheless, turbochargers were useful in high-altitude bombers and some fighter aircraft due to the increased high altitude performance and range.

Turbocharged piston engines are also subject to many of the same operating restrictions as those of gas turbine engines. Turbocharged engines also require frequent inspections of their turbochargers and exhaust systems to search for possible damage caused by the extreme heat and pressure of the turbochargers. Such damage was a prominent problem in the early models of the American Boeing B-29 Superfortress high-altitude bombers used in the Pacific Theater of Operations during 1944–45.

Turbocharged piston engines continued to be used in a large number of postwar airplanes, such as the B-50 Superfortress, the KC-97 Stratofreighter, the Boeing Stratoliner, the Lockheed Constellation, and the C-124 Globemaster II.

In more recent times most aircraft engines for general aviation (light airplanes) are naturally aspirated, but the smaller number of modern aviation piston engines designed to run at high altitudes use turbocharger or turbo-normalizer systems, instead of a supercharger driven from the crankshafts. The change in thinking is largely due to economics. Aviation gasoline was once plentiful and cheap, favoring the simple but fuel-hungry supercharger. As the cost of fuel has increased, the ordinary supercharger has fallen out of favor. Also, depending on what monetary inflation factor one uses, fuel costs have not decreased as fast as production and maintenance costs have.

See also


  1. ^ "The Turbosupercharger and the Airplane Power Plant". 1943-12-30. Retrieved 2010-08-03.
  2. ^ "Twin-screw vs. Centrifugal Supercharging" (PDF). 23 August 2017.
  3. ^ Payton-Smith 1971, pp. 259–260.
  4. ^ Mankau and Petrick 2001, pp. 24–29.
  5. ^ Griehl 1999, p. 8.
  6. ^ Price, 1982. p. 170.
  7. ^ Berger & Street, 1994. p. 199.
  8. ^ Mermet 1999, pp. 14–17.
  9. ^ Mermet 1999, p. 48.
  10. ^ "D&W Performance Air Induction - Performance Products to Increase Vehicle Performance". Retrieved 2014-03-04.
  11. ^ Chartered Mechanical Engineer. Great Britain: Institution of Mechanical Engineers. 1974-01-01. p. 110 – via Google Books.
  12. ^ a b "Technology". Retrieved 2015-10-23.
  13. ^ Ian McNeil, ed. (1990). Encyclopedia of the History of Technology. London: Routledge. pp. 315–321. ISBN 0-203-19211-7. rateau engine.
  14. ^ "Forgotten Hero: The man who invented the two-stroke engine". David Boothroyd, The VU. Archived from the original on 2004-12-15. Retrieved 2005-01-19.
  15. ^ "Gottlieb Daimler".
  16. ^ "12 supercharged cars that made forced induction a feature". 22 March 2022. Retrieved 8 May 2022.
  17. ^ "Turbocharge This and Supercharge That". 8 January 2020. Retrieved 8 May 2022.
  18. ^ Georgano, G.N. (1982). The new encyclopedia of motorcars 1885 to the present (ed.3. ed.). New York: Dutton. p. 415. ISBN 0-525-93254-2.
  19. ^ "Mercedes 6/25/38 hp, 10/40/65 hp and 6/40/65 hp Sport, 1921 - 1925". Retrieved 8 May 2022.
  20. ^ "1923 Mercedes 6/25/40 hq". Retrieved 2009-01-21.
  21. ^ "Gottlieb Daimler, Wilhelm Maybach and the "Grandfather Clock"". 24 June 2008. Retrieved 2009-01-21.
  22. ^ "1923 Miller 122 Supercharged". Retrieved 2009-01-21.
  23. ^ "History of Sunbeam cars". Retrieved 2009-01-21.
  24. ^ "Automobiles Delage, Courbevoie-sur-Seine". Retrieved 2009-01-21.
  25. ^ a b Smallwood 1995, p.133.
  26. ^ Northrop 1955, p.111
  27. ^ a b preface
  28. ^ "Sir Stanley Hooker - History Learning Site".