Names | |
---|---|
IUPAC name
Arabinose
| |
Other names
Pectinose
| |
Identifiers | |
| |
3D model (JSmol)
|
|
ChEBI | |
ChemSpider | |
EC Number |
|
PubChem CID
|
|
UNII |
|
| |
| |
Properties[1] | |
C5H10O5 | |
Molar mass | 150.13 g/mol |
Appearance | Colorless crystals as prisms or needles |
Density | 1.585 g/cm3 (20 °C) |
Melting point | 164 to 165 °C (327 to 329 °F; 437 to 438 K) |
834 g/1 L (25 °C (77 °F)) | |
-85.70·10−6 cm3/mol | |
Hazards | |
NFPA 704 (fire diamond) | |
Related compounds | |
Related aldopentoses
|
Ribose Xylose Lyxose |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Arabinose is an aldopentose – a monosaccharide containing five carbon atoms, and including an aldehyde (CHO) functional group.
For biosynthetic reasons, most saccharides are almost always more abundant in nature as the "D"-form, or structurally analogous to D-glyceraldehyde.[note 1] However, L-arabinose is in fact more common than D-arabinose in nature and is found in nature as a component of biopolymers such as hemicellulose and pectin.[2]
The L-arabinose operon, also known as the araBAD operon, has been the subject of much biomolecular research. The operon directs the catabolism of arabinose in E. coli, and it is dynamically activated in the presence of arabinose and the absence of glucose.[3]
A classic method for the organic synthesis of arabinose from glucose is the Wohl degradation.[4]
Arabinose gets its name from gum arabic, from which it was first isolated.[5]
Originally commercialized as a sweetener, arabinose is an inhibitor of sucrase, the enzyme that breaks down sucrose into glucose and fructose in the small intestine.[6]
Types of carbohydrates | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
General | |||||||||||||||
Geometry | |||||||||||||||
Monosaccharides |
| ||||||||||||||
Multiple |
| ||||||||||||||