A solubility chart is a chart describing whether the ionic compounds formed from different combinations of cations and anions dissolve in or precipitate from solution.

Chart

[edit]

The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate. For compounds with multiple hydrates, the solubility of the most soluble hydrate is shown.

Some compounds, such as nickel oxalate, will not precipitate immediately even though they are insoluble, requiring a few minutes to precipitate out.[1]

Key
S highly soluble or miscible ≥20 g/L
sS slightly soluble 0.1~20 g/L
I relatively insoluble <0.1 g/L
R reacts with or in water
? unavailable
Ions names and symbols Halogens Chalcogens Pnictogens Crystallogens
Fluoride
F
Chloride
Cl
Bromide
Br
Iodide
I
Perchlorate
ClO
4
Oxide
O2−
Hydroxide
OH
Sulfide
S2−
Sulfate
SO2−
4
Nitrate
NO
3
[a]
Phosphate
PO3−
4
Carbonate
CO2−
3
[a]
Cyanide
CN
Thiocyanate
SCN
Acetate
C
2
H
3
O
2
Oxalate
C
2
O2−
4
Hydrogen H+ S S S S S S S sS S S S S S S S S
Ammonium NH+
4
[a]
S S S S S S[b] S R S S S S S S S S
Lithium Li+ sS S S S S R S R S S sS sS S S S S
Sodium Na+ S S S S S R S R S S S S S S S S
Potassium K+ S S S S sS R S R S S S S S S S S
Rubidium Rb+ S S S S sS R S R S S S S S S[3] S S
Caesium Cs+ S S S S sS R S R S S S S S S S S
Beryllium Be2+ S S S R S[4] I I R S S I sS R S[5] S S
Magnesium Mg2+ sS S S S S R I R S S I sS R S[6] S sS
Calcium Ca2+ I S S S S R sS R sS S I I R S[7] S sS
Strontium Sr2+ sS S S S S R sS R sS S sS I S S[8] S I
Barium Ba2+ sS S S S S R S R I S I[9] sS S S S I
Aluminium Al3+ sS S S S[c] S[10] I I R S S I R R S[11] S I
Gallium Ga3+ I S S R S[10] I I R sS S I R R S[12] S ?
Manganese(II) Mn2+ sS S S S S[13] I I I S S I I S S[14] S I
Iron(II) Fe2+ sS S S S S I I I S S I I S S S sS
Cobalt(II) Co2+ sS S S S S[15] I I I S S I I I S S I
Nickel(II) Ni2+ S S S S S I I I S S I I I S S I[1]
Copper(II) Cu2+ sS S S ? S I I I S S I I[d] I I S I
Zinc Zn2+ sS S S S S[16] I I I S S I I I S[17] S I
Cadmium Cd2+ S S S S S[18] I I I S S I I sS sS[17] S I
Mercury(II) Hg2+ R S sS I S[19] I I I R S I I S sS S sS[20]
Vanadium(III) V3+ I S S S S[21] I I I sS S I ? ? S ? ?
Chromium(III) Cr3+ sS S S S S I I I S S I I S S S ?
Iron(III) Fe3+ S[e] S S R S[22] I I I S S sS R[23] S S[24] S[25][f] sS
Gold(III) Au3+ R S sS ? ? I I I ? ? I I S ? sS ?
Tin(II) Sn2+ S S S S S[26] I I I S ? I I ? I[27] R sS
Lead(II) Pb2+ sS sS sS sS S I sS I I S I I sS sS S I
Silver Ag+ S I I I S I I I sS S I I I I sS I
Mercury(I) Hg2+
2
R I I I S[28] I ? ? sS S[g] ? I I ? S[29][g] ?
  Fluoride
F
Chloride
Cl
Bromide
Br
Iodide
I
Perchlorate
ClO
4
Oxide
O2−
Hydroxide
OH
Sulfide
S2−
Sulfate
SO2−
4
Nitrate
NO
3
[a]
Phosphate
PO3−
4
Carbonate
CO2−
3
[a]
Cyanide
CN
Thiocyanate
SCN
Acetate
C
2
H
3
O
2
Oxalate
C
2
O2−
4

See also

[edit]

Notes

[edit]
  1. ^ a b c d e Compounds that include ammonium (NH+
    4
    ), chlorate (ClO
    3
    ), or nitrate (NO
    3
    ) are soluble without exceptions. Compounds that include carbonate (CO2−
    3
    ) are insoluble, unless the compound includes group 1 elements or ammonium.[2]
  2. ^ "Ammonium oxide" does not exist. However, its theoretical molecular formula (NH+
    4
    )2O2− represents that of aqueous ammonia.
  3. ^ Partial electrolysis.
  4. ^ The commonly encountered basic copper carbonate (Cu2CO3(OH)2) is insoluble in water. True copper(II) carbonate (CuCO3) is rare and reacts with water to form basic copper carbonate.
  5. ^ Anhydrous FeF3 is slightly soluble in water; FeF3·3H2O is much more soluble in water.
  6. ^ The commonly encountered basic iron(III) acetate ([Fe3O(OAc)6(H2O)3]OAc) is insoluble in water. True iron(III) acetate (Fe(OAc)3) is rare and is soluble in water.
  7. ^ a b Slowly decomposes in water.

References

[edit]
  1. ^ a b J. A. Allen (1953). "The Precipitation of Nickel Oxalate". J. Phys. Chem. 57 (7): 715–716. doi:10.1021/j150508a027.
  2. ^ "Solubility Table". intro.chem.okstate.edu.
  3. ^ M. J. Joyce; F. Ninio (1989). "Raman Spectrum of Rubidium Thiocyanate at 37 K and Room Temperature". Australian Journal of Physics. 42 (4): 389–400. doi:10.1071/PH890389.
  4. ^ Birgitta Carell; Åke Olin (1961). "Studies on the Hydrolysis of Metal Ions. 37. Application of the Self-Medium Method to the Hydrolysis of Beryllium Perchlorate". Acta Chemica Scandinavica. 15: 1875–1884. doi:10.3891/acta.chem.scand.15-1875.
  5. ^ W. J. Biermann; R. H. McCorkell (1967). "Liquid–liquid extraction of beryllium thiocyanate". Canadian Journal of Chemistry. 45 (22): 2846–2849. doi:10.1139/v67-459.
  6. ^ K. Mereiter; A. Preisinger (1982). "Structure of magnesium isothiocyanate tetrahydrate". Acta Crystallographica B. 38: 1263–1265. doi:10.1107/S0567740882005433.
  7. ^ Claudia Wickleder; Patrick Larsen (2002). "Ca(SCN)2 and Ca(SCN)2 · 2 H2O: Crystal Structure, Thermal Behavior and Vibrational Spectroscopy". Zeitschrift für Naturforschung B. 57 (12): 1419–1426. doi:10.1515/znb-2002-1213.
  8. ^ Claudia Wickleder (2001). "M(SCN)2 (M = Eu, Sr, Ba): Kristallstruktur, thermisches Verhalten, Schwingungsspektroskopie". Zeitschrift für anorganische und allgemeine Chemie (in German). 627 (7): 1693–1698. doi:10.1002/1521-3749(200107)627:7<1693::AID-ZAAC1693>3.0.CO;2-U.
  9. ^ Hazen, Jeffery L.; Cleary, David A. (July 2, 2014). "Yielding Unexpected Results: Precipitation of Ba3(PO4)2 and Implications for Teaching Solubility Principles in the General Chemistry Curriculum". Journal of Chemical Education. 91 (8): 1261–1263. Bibcode:2014JChEd..91.1261H. doi:10.1021/ed400741k.
  10. ^ a b Laurence S. Foster (1939). "(I) The Reaction of Gallium with Perchloric Acid and (II) the Preparation and Properties of Gallium Perchlorate Hydrates". Journal of the American Chemical Society. 61 (11): 3122–3124. doi:10.1021/ja01266a041.
  11. ^ S.J. Patel (1971). "Aluminium(III) isothiocyanate and its addition compounds". Journal of Inorganic and Nuclear Chemistry. 33 (1): 17–22. doi:10.1016/0022-1902(71)80004-0.
  12. ^ S. J. Patel; D. G. Tuck (1969). "Gallium(III) isothiocyanate and its addition compounds". Canadian Journal of Chemistry. 47 (2): 229–233. doi:10.1139/v69-032.
  13. ^ "44318 Manganese(II) perchlorate hexahydrate, 99.995% (metals basis)". Alfa Aesar. Alfa Aesar. Retrieved 16 September 2022.
  14. ^ B. Beagley; C.A. McAuliffe; A.G. Mackie; R.G. Pritchard (1984). "Preparation and crystal structure of manganese(II) isothiocyanate tetrahydrate". Inorganica Chimica Acta. 89 (3): 163–166. doi:10.1016/S0020-1693(00)82345-2.
  15. ^ E. Kamieńska-Piotrowicz (1999). "Conductometric Studies of Cobalt(II) Perchlorate in Acetonitrile-Water Solutions". Zeitschrift für Physikalische Chemie. 210 (1): 1–13. doi:10.1524/zpch.1999.210.Part_1.001. S2CID 102316324.
  16. ^ Lili Lin; Xiaohua Liu; Xiaoming Feng (2014). "Zinc(II) Perchlorate Hexahydrate". Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons, Ltd: 1–5. doi:10.1002/047084289X.rn01657. ISBN 9780470842898.
  17. ^ a b Masaki Kosaku (1931). "THE SOLUBILITIES OF THIOCYANATE OF METALS". Bulletin of the Chemical Society of Japan. 6 (7): 163–165. doi:10.1246/bcsj.6.163.
  18. ^ P. J. Reilly; R. H. Strokes (1971). "The diffusion coefficients of cadmium chloride and cadmium perchlorate in water at 25°". Australian Journal of Chemistry. 24 (7): 1361–1367. doi:10.1071/CH9711361.
  19. ^ Franco Cristiani; Francesco Demartin; Francesco A. Devillanova; Angelo Diaz; Francesco Isaia; Gaetano Verani (1990). "Reactivity of Mercury(II) Perchlorate Towards 5,5 -Dimethylimidazolidine-2- Thione-4-One. Structure of Bis(5,5-Dimethylimidazolidine-2-Thione-4-One)Mercury(II) Perchlorate Triaquo". Journal of Coordination Chemistry. 21 (2): 137–146. doi:10.1080/00958979009409182.
  20. ^ "Properties of substance: mercury(II) oxalate Group of substances". Chemister. Chemister. Retrieved 13 September 2022.
  21. ^ Burkhart, M J; Newton, T W (1969). "Kinetics of the reaction between vanadium(II) and neptunium(IV) in aqueous perchlorate solutions". J. Phys. Chem. 73 (6): 1741–1746. doi:10.1021/j100726a018.
  22. ^ M. Magini (1978). "An X-ray investigation on the structure of iron(III) perchlorate solutions". Journal of Inorganic and Nuclear Chemistry. 40 (1): 43–48. doi:10.1016/0022-1902(78)80304-2.
  23. ^ "Iron (III) Carbonate Formula". softschools.com. p. 1. Retrieved 19 August 2022.
  24. ^ Sano Hirotoshi; Akane Michiko (1973). "MÖSSBAUER SPECTROSCOPIC STUDIES ON IRON THIOCYANATE". Chemistry Letters. 2 (1): 43–46. doi:10.1246/cl.1973.43.
  25. ^ Ram C. Paul; Ramesh C. Narula; Sham K. Vasisht (1978). "Iron(III) acetates". Transition Metal Chemistry. 3: 35–38. doi:10.1007/BF01393501. S2CID 94447648.
  26. ^ C.G.Davies; J.D.Donaldson (1968). "Tin(II) perchlorate trihydrate". Journal of Inorganic and Nuclear Chemistry. 30 (10). Chelsea College of Science and Technology: 2635–2639. doi:10.1016/0022-1902(68)80389-6.
  27. ^ Tewfik B. Absi; Ramesh C. Makhija; Mario Onyszchuk (1978). "Synthesis and vibrational spectra of tin(II) isothiocyanate adducts with some O- and N-donor ligands". Canadian Journal of Chemistry. 56 (15): 2039–2041. doi:10.1139/v78-333.
  28. ^ D. R. Rossėinsky (1963). "The reaction between mercury(I) and manganese(III) in aqueous perchlorate solution". Journal of the Chemical Society (Resumed): 1181–1186. doi:10.1039/JR9630001181.
  29. ^ National Center for Biotechnology Information. "PubChem Compound Summary for CID 61181, Mercurous acetate". PubChem.