Behavioral neuroscience, also known as biological psychology[1], biopsychology, or psychobiology[2] is the application of the principles of biology (in particular neurobiology), to the study of physiological, genetic, and developmental mechanisms of behavior in human and non-human animals. It typically investigates at the level of nerves, neurotransmitters, brain circuitry the basic biological processes that underlie normal and abnormal behavior. Most typically experiments in behavioral neuroscience involve non-human animal models (such as rats and mice, and non-human primates) which have implications for better understanding of human pathology and therefore contribute to evidence based practice.

History

The study of behavioral neuroscience dates back to Avicenna (980-1037), a Persian psychologist and physician who in The Canon of Medicine, recognized physiological psychology in the treatment of illnesses involving emotions, and developed a system for associating changes in the pulse rate with inner feelings, which is seen as an anticipation of the word association test.[3] Avicenna also gave psychological explanations for certain somatic illnesses, and he always linked the physical and psychological illnesses together. He explained that humidity inside the head can contribute to mood disorders, and he recognized that this occurs when the amount of breath changes: happiness increases the breath, which leads to increased moisture inside the brain, but if this moisture goes beyond its limits, the brain would lose control over its rationality and lead to mental disorders.[4]

Behavioral neuroscience as a scientific discipline later emerged from a variety of scientific and philosophical traditions in the 18th and 19th centuries. In philosophy, men like René Descartes proposed physical models to explain animal and human behavior. Descartes, for example, suggested that the pineal gland, a midline unpaired structure in the brain of many organisms, was the point of contact between mind and body. Descartes also elaborated on a theory in which the pneumatics of bodily fluids could explain reflexes and other motor behavior. This theory was inspired by moving statues in a garden in Paris.[5]

Other philosophers also helped give birth to psychology. One of the earliest textbooks in the new field, The Principles of Psychology by William James (1890), argues that the scientific study of psychology should be grounded in an understanding of biology:

Bodily experiences, therefore, and more particularly brain-experiences, must take a place amongst those conditions of the mental life of which Psychology need take account. The spiritualist and the associationist must both be 'cerebralists,' to the extent at least of admitting that certain peculiarities in the way of working of their own favorite principles are explicable only by the fact that the brain laws are a codeterminant of their result. Our first conclusion, then, is that a certain amount of brain-physiology must be presupposed or included in Psychology.[6]

James, like many early psychologists, had considerable training in physiology. The emergence of both psychology and behavioral neuroscience as legitimate sciences can be traced from the emergence of physiology from anatomy, particularly neuroanatomy. Physiologists conducted experiments on living organisms, a practice that was distrusted by the dominant anatomists of the 18th and 19th centuries.[7] The influential work of Claude Bernard, Charles Bell, and William Harvey helped to convince the scientific community that reliable data could be obtained from living subjects.

The term "psychobiology" has been used in a variety of contexts, but was likely first used in its modern sense by Knight Dunlap in his book An Outline of Psychobiology (1914).[8] Dunlap also founded the journal Psychobiology. In the announcement of that journal, Dunlap writes that the journal will publish research "...bearing on the interconnection of mental and physiological functions", which describes the field of behavioral neuroscience even in its modern sense.[8]

Relationship to other fields of psychology and biology

In many cases, humans may serve as experimental subjects in behavioral neuroscience experiments; however, a great deal of the experimental literature in behavioral neuroscience comes from the study of non-human species, most frequently rats, mice, and monkeys. As a result, a critical assumption in behavioral neuroscience is that organisms share biological and behavioral similarities, enough to permit extrapolations across species. This allies behavioral neuroscience closely with comparative psychology, evolutionary psychology, evolutionary biology, and neurobiology. Behavioral neuroscience also has paradigmatic and methodological similarities to neuropsychology, which relies heavily on the study of the behavior of humans with nervous system dysfunction (i.e., a non-experimentally based biological manipulation).

Synonyms for behavioral neuroscience include biopsychology, behavioral neuroscience, and psychobiology.[9] Physiological psychology is another term often used synonymously with behavioral neuroscience, though some authors would make physiological psychology a subfield of behavioral neuroscience, with an appropriately more narrow definition.

Research methods

The distinguishing characteristic of a behavioral neuroscience experiment is that either the independent variable of the experiment is biological, or some dependent variable is biological. In other words, the nervous system of the organism under study is permanently or temporarily altered, or some aspect of the nervous system is measured (usually to be related to a behavioral variable).

Disabling or decreasing neural function

Enhancing neural function

Measuring neural activity

Genetic manipulations

Limitations and advantages

Different manipulations have advantages and limitations. Neural tissue destroyed by surgery, electric shock or neurotoxcin is a permanent manipulation and therefore limits follow-up investigation.[12] Most genetic manipulation techniques are also considered permanent.[12] Temporary lesions can be achieved with advanced in genetic manipulations, for example, certain genes can now be switched on and off with diet.[12] Pharmacological manipulations also allow blocking of certain neurotransmitters temporarily as the function returns to its previous state after the drug has been metabolized.[12]

Topic areas in behavioral neuroscience

In general, behavioral neuroscientists study similar themes and issues as academic psychologists, though limited by the need to use nonhuman animals. As a result, the bulk of literature in behavioral neuroscience deals with mental processes and behaviors that are shared across different animal models such as:

However, with increasing technical sophistication and with the development of more precise noninvasive methods that can be applied to human subjects, behavioral neuroscientists are beginning to contribute to other classical topic areas of psychology, philosophy, and linguistics, such as:

Behavioral neuroscience has also had a strong history of contributing to the understanding of medical disorders, including those that fall under the purview of clinical psychology and biological psychopathology (also known as abnormal psychology). Although animal models do not exist for all mental illnesses, the field has contributed important therapeutic data on a variety of conditions, including:

Nobel Laureates

The following Nobel Prize winners could reasonably be considered biological psychologists. (This list omits winners who were almost exclusively neuroanatomists or neurophysiologists; i.e., those that did not measure behavioral or psychological variables.)

See also

References

  1. ^ Rosenzweig, Breedlove, Watson; Biological Psychology: An Introduction to Behavioral and Cognitive Neuroscience, 4/e, p. 3
  2. ^ Merriam-Webster's Online Dictionary » Psychobiology>
  3. ^ Ibrahim B. Syed PhD, "Islamic Medicine: 1000 years ahead of its times", Journal of the International Society for the History of Islamic Medicine, 2002 (2): 2-9 [7]
  4. ^ Amber Haque (2004), "Psychology from Islamic Perspective: Contributions of Early Muslim Scholars and Challenges to Contemporary Muslim Psychologists", Journal of Religion and Health 43 (4): 357-377 [366].
  5. ^ Carlson, Neil (2007). Physiology of Behavior (9th Ed.). Allyn and Bacon. pp. 11–14. ISBN 0-205-46724-5.
  6. ^ James, William (1950/1890). The Principles of Psychology, Vol. One. Dover Publications, Inc. pp. 4–5. ISBN 0-486-20381-6. ((cite book)): Check date values in: |year= (help)
  7. ^ Shepherd, Gordon M. (1991). Foundations of the Neuron Doctrine. Oxford University Press. ISBN 0-19-506491-7.
  8. ^ a b Dewsbury, Donald (1991). ""Psychobiology"". American Psychologist (46): 198–205.
  9. ^ S. Marc Breedlove, Mark Rosenzweig and Neil V. Watson (2007). Biological Psychology: An Introduction to Behavioral and Cognitive Neuroscience. Sinauer Associates. ISBN 978-0878937059
  10. ^ Kim, Jeansok J.; DeCola, Joseph P.; Landeira-Fernandez, Jesus; Fanselow, Michael S. "N-methyl-D-aspartate receptor antagonist APV blocks acquisition but not expression of fear conditioning." Behavioral Neuroscience. Vol 105(1), Feb 1991, 126-133. {doi|10.1037/0735-7044.105.1.126}
  11. ^ von Heimendahl, M., Itskov, P., Arabzadeh, E., & Diamond, M. (2007). Neuronal activity in rat barrel cortex underlying texture discrimination. PLoS Biol, 5(11), e305.
  12. ^ a b c d T Abel, KM Lattal (2001) "Molecular mechanisms of memory acquisition, consolidation and retrieval" Current Opinion in Neurobiology
Listen to this article
(2 parts, 8 minutes)
  1. Part 2
Spoken Wikipedia icon
These audio files were created from a revision of this article dated
Error: no date provided
, and do not reflect subsequent edits.

Outline of psychology