Schlegel diagram for the truncated 120-cell with tetrahedral cells visible
Orthographic projection of the truncated 120-cell, in the H3 Coxeter plane (D10 symmetry). Only vertices and edges are drawn.

In geometry, a uniform 4-polytope (or uniform polychoron)[1] is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.

There are 47 non-prismatic convex uniform 4-polytopes. There are two infinite sets of convex prismatic forms, along with 17 cases arising as prisms of the convex uniform polyhedra. There are also an unknown number of non-convex star forms.

History of discovery

Regular 4-polytopes

Regular 4-polytopes are a subset of the uniform 4-polytopes, which satisfy additional requirements. Regular 4-polytopes can be expressed with Schläfli symbol {p,q,r} have cells of type {p,q}, faces of type {p}, edge figures {r}, and vertex figures {q,r}.

The existence of a regular 4-polytope {p,q,r} is constrained by the existence of the regular polyhedra {p,q} which becomes cells, and {q,r} which becomes the vertex figure.

Existence as a finite 4-polytope is dependent upon an inequality:[15]

The 16 regular 4-polytopes, with the property that all cells, faces, edges, and vertices are congruent:

Convex uniform 4-polytopes

Symmetry of uniform 4-polytopes in four dimensions

Main article: Point groups in four dimensions

Orthogonal subgroups
The 24 mirrors of F4 can be decomposed into 2 orthogonal D4 groups:
  1. = (12 mirrors)
  2. = (12 mirrors)
The 10 mirrors of B3×A1 can be decomposed into orthogonal groups, 4A1 and D3:
  1. = (3+1 mirrors)
  2. = (6 mirrors)

There are 5 fundamental mirror symmetry point group families in 4-dimensions: A4 = , B4 = , D4 = , F4 = , H4 = .[7] There are also 3 prismatic groups A3A1 = , B3A1 = , H3A1 = , and duoprismatic groups: I2(p)×I2(q) = . Each group defined by a Goursat tetrahedron fundamental domain bounded by mirror planes.

Each reflective uniform 4-polytope can be constructed in one or more reflective point group in 4 dimensions by a Wythoff construction, represented by rings around permutations of nodes in a Coxeter diagram. Mirror hyperplanes can be grouped, as seen by colored nodes, separated by even-branches. Symmetry groups of the form [a,b,a], have an extended symmetry, [[a,b,a]], doubling the symmetry order. This includes [3,3,3], [3,4,3], and [p,2,p]. Uniform polytopes in these group with symmetric rings contain this extended symmetry.

If all mirrors of a given color are unringed (inactive) in a given uniform polytope, it will have a lower symmetry construction by removing all of the inactive mirrors. If all the nodes of a given color are ringed (active), an alternation operation can generate a new 4-polytope with chiral symmetry, shown as "empty" circled nodes", but the geometry is not generally adjustable to create uniform solutions.

Weyl
group
Conway
Quaternion
Abstract
structure
Order Coxeter
diagram
Coxeter
notation
Commutator
subgroup
Coxeter
number

(h)
Mirrors
m=2h
Irreducible
A4 +1/60[I×I].21 S5 120 [3,3,3] [3,3,3]+ 5 10
D4 ±1/3[T×T].2 1/2.2S4 192 [31,1,1] [31,1,1]+ 6 12
B4 ±1/6[O×O].2 2S4 = S2≀S4 384 [4,3,3] 8 4 12
F4 ±1/2[O×O].23 3.2S4 1152 [3,4,3] [3+,4,3+] 12 12 12
H4 ±[I×I].2 2.(A5×A5).2 14400 [5,3,3] [5,3,3]+ 30 60
Prismatic groups
A3A1 +1/24[O×O].23 S4×D1 48 [3,3,2] = [3,3]×[ ] [3,3]+ - 6 1
B3A1 ±1/24[O×O].2 S4×D1 96 [4,3,2] = [4,3]×[ ] - 3 6 1
H3A1 ±1/60[I×I].2 A5×D1 240 [5,3,2] = [5,3]×[ ] [5,3]+ - 15 1
Duoprismatic groups (Use 2p,2q for even integers)
I2(p)I2(q) ±1/2[D2p×D2q] Dp×Dq 4pq [p,2,q] = [p]×[q] [p+,2,q+] - p q
I2(2p)I2(q) ±1/2[D4p×D2q] D2p×Dq 8pq [2p,2,q] = [2p]×[q] - p p q
I2(2p)I2(2q) ±1/2[D4p×D4q] D2p×D2q 16pq [2p,2,2q] = [2p]×[2q] - p p q q

Enumeration

There are 64 convex uniform 4-polytopes, including the 6 regular convex 4-polytopes, and excluding the infinite sets of the duoprisms and the antiprismatic prisms.

These 64 uniform 4-polytopes are indexed below by George Olshevsky. Repeated symmetry forms are indexed in brackets.

In addition to the 64 above, there are 2 infinite prismatic sets that generate all of the remaining convex forms:

The A4 family

Further information: A4 polytope

The 5-cell has diploid pentachoric [3,3,3] symmetry,[7] of order 120, isomorphic to the permutations of five elements, because all pairs of vertices are related in the same way.

Facets (cells) are given, grouped in their Coxeter diagram locations by removing specified nodes.

[3,3,3] uniform polytopes
# Name
Bowers name (and acronym)
Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cell counts by location Element counts
Pos. 3

(5)
Pos. 2

(10)
Pos. 1

(10)
Pos. 0

(5)
Cells Faces Edges Vertices
1 5-cell
Pentachoron[7] (pen)

{3,3,3}
(4)

(3.3.3)
5 10 10 5
2 rectified 5-cell
Rectified pentachoron (rap)

r{3,3,3}
(3)

(3.3.3.3)
(2)

(3.3.3)
10 30 30 10
3 truncated 5-cell
Truncated pentachoron (tip)

t{3,3,3}
(3)

(3.6.6)
(1)

(3.3.3)
10 30 40 20
4 cantellated 5-cell
Small rhombated pentachoron (srip)

rr{3,3,3}
(2)

(3.4.3.4)
(2)

(3.4.4)
(1)

(3.3.3.3)
20 80 90 30
7 cantitruncated 5-cell
Great rhombated pentachoron (grip)

tr{3,3,3}
(2)

(4.6.6)
(1)

(3.4.4)
(1)

(3.6.6)
20 80 120 60
8 runcitruncated 5-cell
Prismatorhombated pentachoron (prip)

t0,1,3{3,3,3}
(1)

(3.6.6)
(2)

(4.4.6)
(1)

(3.4.4)
(1)

(3.4.3.4)
30 120 150 60
[[3,3,3]] uniform polytopes
# Name
Bowers name (and acronym)
Vertex
figure
Coxeter diagram

and Schläfli
symbols
Cell counts by location Element counts
Pos. 3-0

(10)
Pos. 1-2

(20)
Alt Cells Faces Edges Vertices
5 *runcinated 5-cell
Small prismatodecachoron (spid)

t0,3{3,3,3}
(2)

(3.3.3)
(6)

(3.4.4)
30 70 60 20
6 *bitruncated 5-cell
Decachoron (deca)

2t{3,3,3}
(4)

(3.6.6)
10 40 60 30
9 *omnitruncated 5-cell
Great prismatodecachoron (gippid)

t0,1,2,3{3,3,3}
(2)

(4.6.6)
(2)

(4.4.6)
30 150 240 120
Nonuniform omnisnub 5-cell
Snub decachoron (snad)
Snub pentachoron (snip)[16]

ht0,1,2,3{3,3,3}
(2)
(3.3.3.3.3)
(2)
(3.3.3.3)
(4)
(3.3.3)
90 300 270 60

The three uniform 4-polytopes forms marked with an asterisk, *, have the higher extended pentachoric symmetry, of order 240, [[3,3,3]] because the element corresponding to any element of the underlying 5-cell can be exchanged with one of those corresponding to an element of its dual. There is one small index subgroup [3,3,3]+, order 60, or its doubling [[3,3,3]]+, order 120, defining an omnisnub 5-cell which is listed for completeness, but is not uniform.

The B4 family

Further information: B4 polytope

This family has diploid hexadecachoric symmetry,[7] [4,3,3], of order 24×16=384: 4!=24 permutations of the four axes, 24=16 for reflection in each axis. There are 3 small index subgroups, with the first two generate uniform 4-polytopes which are also repeated in other families, [1+,4,3,3], [4,(3,3)+], and [4,3,3]+, all order 192.

Tesseract truncations

# Name
(Bowers name and acronym)
Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cell counts by location Element counts
Pos. 3

(8)
Pos. 2

(24)
Pos. 1

(32)
Pos. 0

(16)
Cells Faces Edges Vertices
10 tesseract or 8-cell
Tesseract (tes)

{4,3,3}
(4)

(4.4.4)
8 24 32 16
11 Rectified tesseract (rit)
r{4,3,3}
(3)

(3.4.3.4)
(2)

(3.3.3)
24 88 96 32
13 Truncated tesseract (tat)
t{4,3,3}
(3)

(3.8.8)
(1)

(3.3.3)
24 88 128 64
14 Cantellated tesseract
Small rhombated tesseract (srit)

rr{4,3,3}
(2)

(3.4.4.4)
(2)

(3.4.4)
(1)

(3.3.3.3)
56 248 288 96
15 Runcinated tesseract
(also runcinated 16-cell)
Small disprismatotesseractihexadecachoron (sidpith)

t0,3{4,3,3}
(1)

(4.4.4)
(3)

(4.4.4)
(3)

(3.4.4)
(1)

(3.3.3)
80 208 192 64
16 Bitruncated tesseract
(also bitruncated 16-cell)
Tesseractihexadecachoron (tah)

2t{4,3,3}
(2)

(4.6.6)
(2)

(3.6.6)
24 120 192 96
18 Cantitruncated tesseract
Great rhombated tesseract (grit)

tr{4,3,3}
(2)

(4.6.8)
(1)

(3.4.4)
(1)

(3.6.6)
56 248 384 192
19 Runcitruncated tesseract
Prismatorhombated hexadecachoron (proh)

t0,1,3{4,3,3}
(1)

(3.8.8)
(2)

(4.4.8)
(1)

(3.4.4)
(1)

(3.4.3.4)
80 368 480 192
21 Omnitruncated tesseract
(also omnitruncated 16-cell)
Great disprismatotesseractihexadecachoron (gidpith)

t0,1,2,3{3,3,4}
(1)

(4.6.8)
(1)

(4.4.8)
(1)

(4.4.6)
(1)

(4.6.6)
80 464 768 384
Related half tesseract, [1+,4,3,3] uniform 4-polytopes
# Name
(Bowers style acronym)
Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cell counts by location Element counts
Pos. 3

(8)
Pos. 2

(24)
Pos. 1

(32)
Pos. 0

(16)
Alt Cells Faces Edges Vertices
12 Half tesseract
Demitesseract
= 16-cell (hex)
=
h{4,3,3}={3,3,4}
(4)

(3.3.3)
(4)

(3.3.3)
16 32 24 8
[17] Cantic tesseract
= Truncated 16-cell (thex)
=
h2{4,3,3}=t{4,3,3}
(4)

(6.6.3)
(1)

(3.3.3.3)
24 96 120 48
[11] Runcic tesseract
= Rectified tesseract (rit)
=
h3{4,3,3}=r{4,3,3}
(3)

(3.4.3.4)
(2)

(3.3.3)
24 88 96 32
[16] Runcicantic tesseract
= Bitruncated tesseract (tah)
=
h2,3{4,3,3}=2t{4,3,3}
(2)

(3.4.3.4)
(2)

(3.6.6)
24 120 192 96
[11] = Rectified tesseract (rat) =
h1{4,3,3}=r{4,3,3}
24 88 96 32
[16] = Bitruncated tesseract (tah) =
h1,2{4,3,3}=2t{4,3,3}
24 120 192 96
[23] = Rectified 24-cell (rico) =
h1,3{4,3,3}=rr{3,3,4}
48 240 288 96
[24] = Truncated 24-cell (tico) =
h1,2,3{4,3,3}=tr{3,3,4}
48 240 384 192
# Name
(Bowers style acronym)
Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cell counts by location Element counts
Pos. 3

(8)
Pos. 2

(24)
Pos. 1

(32)
Pos. 0

(16)
Alt Cells Faces Edges Vertices
Nonuniform omnisnub tesseract
Snub tesseract (snet)[17]
(Or omnisnub 16-cell)

ht0,1,2,3{4,3,3}
(1)

(3.3.3.3.4)
(1)

(3.3.3.4)
(1)

(3.3.3.3)
(1)

(3.3.3.3.3)
(4)

(3.3.3)
272 944 864 192

16-cell truncations

# Name (Bowers name and acronym) Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cell counts by location Element counts
Pos. 3

(8)
Pos. 2

(24)
Pos. 1

(32)
Pos. 0

(16)
Alt Cells Faces Edges Vertices
[12] 16-cell
Hexadecachoron[7] (hex)

{3,3,4}
(8)

(3.3.3)
16 32 24 8
[22] *Rectified 16-cell
(Same as 24-cell) (ico)
=
r{3,3,4}
(2)

(3.3.3.3)
(4)

(3.3.3.3)
24 96 96 24
17 Truncated 16-cell
Truncated hexadecachoron (thex)

t{3,3,4}
(1)

(3.3.3.3)
(4)

(3.6.6)
24 96 120 48
[23] *Cantellated 16-cell
(Same as rectified 24-cell) (rico)
=
rr{3,3,4}
(1)

(3.4.3.4)
(2)

(4.4.4)
(2)

(3.4.3.4)
48 240 288 96
[15] Runcinated 16-cell
(also runcinated tesseract) (sidpith)

t0,3{3,3,4}
(1)

(4.4.4)
(3)

(4.4.4)
(3)

(3.4.4)
(1)

(3.3.3)
80 208 192 64
[16] Bitruncated 16-cell
(also bitruncated tesseract) (tah)

2t{3,3,4}
(2)

(4.6.6)
(2)

(3.6.6)
24 120 192 96
[24] *Cantitruncated 16-cell
(Same as truncated 24-cell) (tico)
=
tr{3,3,4}
(1)

(4.6.6)
(1)

(4.4.4)
(2)

(4.6.6)
48 240 384 192
20 Runcitruncated 16-cell
Prismatorhombated tesseract (prit)

t0,1,3{3,3,4}
(1)

(3.4.4.4)
(1)

(4.4.4)
(2)

(4.4.6)
(1)

(3.6.6)
80 368 480 192
[21] Omnitruncated 16-cell
(also omnitruncated tesseract) (gidpith)

t0,1,2,3{3,3,4}
(1)

(4.6.8)
(1)

(4.4.8)
(1)

(4.4.6)
(1)

(4.6.6)
80 464 768 384
[31] alternated cantitruncated 16-cell
(Same as the snub 24-cell) (sadi)

sr{3,3,4}
(1)

(3.3.3.3.3)
(1)

(3.3.3)
(2)

(3.3.3.3.3)
(4)

(3.3.3)
144 480 432 96
Nonuniform Runcic snub rectified 16-cell
Pyritosnub tesseract (pysnet)

sr3{3,3,4}
(1)

(3.4.4.4)
(2)

(3.4.4)
(1)

(4.4.4)
(1)

(3.3.3.3.3)
(2)

(3.4.4)
176 656 672 192
(*) Just as rectifying the tetrahedron produces the octahedron, rectifying the 16-cell produces the 24-cell, the regular member of the following family.

The snub 24-cell is repeat to this family for completeness. It is an alternation of the cantitruncated 16-cell or truncated 24-cell, with the half symmetry group [(3,3)+,4]. The truncated octahedral cells become icosahedra. The cubes becomes tetrahedra, and 96 new tetrahedra are created in the gaps from the removed vertices.

The F4 family

Further information: F4 polytope

This family has diploid icositetrachoric symmetry,[7] [3,4,3], of order 24×48=1152: the 48 symmetries of the octahedron for each of the 24 cells. There are 3 small index subgroups, with the first two isomorphic pairs generating uniform 4-polytopes which are also repeated in other families, [3+,4,3], [3,4,3+], and [3,4,3]+, all order 576.

[3,4,3] uniform 4-polytopes
# Name Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cell counts by location Element counts
Pos. 3

(24)
Pos. 2

(96)
Pos. 1

(96)
Pos. 0

(24)
Cells Faces Edges Vertices
22 24-cell
(Same as rectified 16-cell)
Icositetrachoron[7] (ico)

{3,4,3}
(6)

(3.3.3.3)
24 96 96 24
23 rectified 24-cell
(Same as cantellated 16-cell)
Rectified icositetrachoron (rico)

r{3,4,3}
(3)

(3.4.3.4)
(2)

(4.4.4)
48 240 288 96
24 truncated 24-cell
(Same as cantitruncated 16-cell)
Truncated icositetrachoron (tico)

t{3,4,3}
(3)

(4.6.6)
(1)

(4.4.4)
48 240 384 192
25 cantellated 24-cell
Small rhombated icositetrachoron (srico)

rr{3,4,3}
(2)

(3.4.4.4)
(2)

(3.4.4)
(1)

(3.4.3.4)
144 720 864 288
28 cantitruncated 24-cell
Great rhombated icositetrachoron (grico)

tr{3,4,3}
(2)

(4.6.8)
(1)

(3.4.4)
(1)

(3.8.8)
144 720 1152 576
29 runcitruncated 24-cell
Prismatorhombated icositetrachoron (prico)

t0,1,3{3,4,3}
(1)

(4.6.6)
(2)

(4.4.6)
(1)

(3.4.4)
(1)

(3.4.4.4)
240 1104 1440 576
[3+,4,3] uniform 4-polytopes
# Name Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cell counts by location Element counts
Pos. 3

(24)
Pos. 2

(96)
Pos. 1

(96)
Pos. 0

(24)
Alt Cells Faces Edges Vertices
31 snub 24-cell
Snub disicositetrachoron (sadi)

s{3,4,3}
(3)

(3.3.3.3.3)
(1)

(3.3.3)
(4)

(3.3.3)
144 480 432 96
Nonuniform runcic snub 24-cell
Prismatorhombisnub icositetrachoron (prissi)

s3{3,4,3}
(1)

(3.3.3.3.3)
(2)

(3.4.4)
(1)

(3.6.6)
(3)

Tricup
240 960 1008 288
[25] cantic snub 24-cell
(Same as cantellated 24-cell) (srico)

s2{3,4,3}
(2)

(3.4.4.4)
(1)

(3.4.3.4)
(2)

(3.4.4)
144 720 864 288
[29] runcicantic snub 24-cell
(Same as runcitruncated 24-cell) (prico)

s2,3{3,4,3}
(1)

(4.6.6)
(1)

(3.4.4)
(1)

(3.4.4.4)
(2)

(4.4.6)
240 1104 1440 576
(†) The snub 24-cell here, despite its common name, is not analogous to the snub cube; rather, it is derived by an alternation of the truncated 24-cell. Its symmetry number is only 576, (the ionic diminished icositetrachoric group, [3+,4,3]).

Like the 5-cell, the 24-cell is self-dual, and so the following three forms have twice as many symmetries, bringing their total to 2304 (extended icositetrachoric symmetry [[3,4,3]]).

[[3,4,3]] uniform 4-polytopes
# Name Vertex
figure
Coxeter diagram

and Schläfli
symbols
Cell counts by location Element counts
Pos. 3-0


(48)
Pos. 2-1


(192)
Cells Faces Edges Vertices
26 runcinated 24-cell
Small prismatotetracontoctachoron (spic)

t0,3{3,4,3}
(2)

(3.3.3.3)
(6)

(3.4.4)
240 672 576 144
27 bitruncated 24-cell
Tetracontoctachoron (cont)

2t{3,4,3}
(4)

(3.8.8)
48 336 576 288
30 omnitruncated 24-cell
Great prismatotetracontoctachoron (gippic)

t0,1,2,3{3,4,3}
(2)

(4.6.8)
(2)

(4.4.6)
240 1392 2304 1152
[[3,4,3]]+ isogonal 4-polytope
# Name Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cell counts by location Element counts
Pos. 3-0


(48)
Pos. 2-1


(192)
Alt Cells Faces Edges Vertices
Nonuniform omnisnub 24-cell
Snub tetracontoctachoron (snoc)
Snub icositetrachoron (sni)[18]

ht0,1,2,3{3,4,3}
(2)

(3.3.3.3.4)
(2)

(3.3.3.3)
(4)

(3.3.3)
816 2832 2592 576

The H4 family

Further information: H4 polytope

This family has diploid hexacosichoric symmetry,[7] [5,3,3], of order 120×120=24×600=14400: 120 for each of the 120 dodecahedra, or 24 for each of the 600 tetrahedra. There is one small index subgroups [5,3,3]+, all order 7200.

120-cell truncations

# Name
(Bowers name and acronym)
Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cell counts by location Element counts
Pos. 3

(120)
Pos. 2

(720)
Pos. 1

(1200)
Pos. 0

(600)
Alt Cells Faces Edges Vertices
32 120-cell
(hecatonicosachoron or dodecacontachoron)[7]
Hecatonicosachoron (hi)

{5,3,3}
(4)

(5.5.5)
120 720 1200 600
33 rectified 120-cell
Rectified hecatonicosachoron (rahi)

r{5,3,3}
(3)

(3.5.3.5)
(2)

(3.3.3)
720 3120 3600 1200
36 truncated 120-cell
Truncated hecatonicosachoron (thi)

t{5,3,3}
(3)

(3.10.10)
(1)

(3.3.3)
720 3120 4800 2400
37 cantellated 120-cell
Small rhombated hecatonicosachoron (srahi)

rr{5,3,3}
(2)

(3.4.5.4)
(2)

(3.4.4)
(1)

(3.3.3.3)
1920 9120 10800 3600
38 runcinated 120-cell
(also runcinated 600-cell)
Small disprismatohexacosihecatonicosachoron (sidpixhi)

t0,3{5,3,3}
(1)

(5.5.5)
(3)

(4.4.5)
(3)

(3.4.4)
(1)

(3.3.3)
2640 7440 7200 2400
39 bitruncated 120-cell
(also bitruncated 600-cell)
Hexacosihecatonicosachoron (xhi)

2t{5,3,3}
(2)

(5.6.6)
(2)

(3.6.6)
720 4320 7200 3600
42 cantitruncated 120-cell
Great rhombated hecatonicosachoron (grahi)

tr{5,3,3}
(2)

(4.6.10)
(1)

(3.4.4)
(1)

(3.6.6)
1920 9120 14400 7200
43 runcitruncated 120-cell
Prismatorhombated hexacosichoron (prix)

t0,1,3{5,3,3}
(1)

(3.10.10)
(2)

(4.4.10)
(1)

(3.4.4)
(1)

(3.4.3.4)
2640 13440 18000 7200
46 omnitruncated 120-cell
(also omnitruncated 600-cell)
Great disprismatohexacosihecatonicosachoron (gidpixhi)

t0,1,2,3{5,3,3}
(1)

(4.6.10)
(1)

(4.4.10)
(1)

(4.4.6)
(1)

(4.6.6)
2640 17040 28800 14400
Nonuniform omnisnub 120-cell
Snub hecatonicosachoron (snahi)[19]
(Same as the omnisnub 600-cell)

ht0,1,2,3{5,3,3}
(1)
(3.3.3.3.5)
(1)
(3.3.3.5)
(1)
(3.3.3.3)
(1)
(3.3.3.3.3)
(4)
(3.3.3)
9840 35040 32400 7200

600-cell truncations

# Name
(Bowers style acronym)
Vertex
figure
Coxeter diagram
and Schläfli
symbols
Symmetry Cell counts by location Element counts
Pos. 3

(120)
Pos. 2

(720)
Pos. 1

(1200)
Pos. 0

(600)
Cells Faces Edges Vertices
35 600-cell
Hexacosichoron[7] (ex)

{3,3,5}
[5,3,3]
order 14400
(20)

(3.3.3)
600 1200 720 120
[47] 20-diminished 600-cell
= Grand antiprism (gap)
Nonwythoffian
construction
[[10,2+,10]]
order 400
Index 36
(2)

(3.3.3.5)
(12)

(3.3.3)
320 720 500 100
[31] 24-diminished 600-cell
= Snub 24-cell (sadi)
Nonwythoffian
construction
[3+,4,3]
order 576
index 25
(3)

(3.3.3.3.3)
(5)

(3.3.3)
144 480 432 96
Nonuniform bi-24-diminished 600-cell
Bi-icositetradiminished hexacosichoron (bidex)
Nonwythoffian
construction
order 144
index 100
(6)

tdi
48 192 216 72
34 rectified 600-cell
Rectified hexacosichoron (rox)

r{3,3,5}
[5,3,3] (2)

(3.3.3.3.3)
(5)

(3.3.3.3)
720 3600 3600 720
Nonuniform 120-diminished rectified 600-cell
Swirlprismatodiminished rectified hexacosichoron (spidrox)
Nonwythoffian
construction
order 1200
index 12
(2)

3.3.3.5
(2)

4.4.5
(5)

P4
840 2640 2400 600
41 truncated 600-cell
Truncated hexacosichoron (tex)

t{3,3,5}
[5,3,3] (1)

(3.3.3.3.3)
(5)

(3.6.6)
720 3600 4320 1440
40 cantellated 600-cell
Small rhombated hexacosichoron (srix)

rr{3,3,5}
[5,3,3] (1)

(3.5.3.5)
(2)

(4.4.5)
(1)

(3.4.3.4)
1440 8640 10800 3600
[38] runcinated 600-cell
(also runcinated 120-cell) (sidpixhi)

t0,3{3,3,5}
[5,3,3] (1)

(5.5.5)
(3)

(4.4.5)
(3)

(3.4.4)
(1)

(3.3.3)
2640 7440 7200 2400
[39] bitruncated 600-cell
(also bitruncated 120-cell) (xhi)

2t{3,3,5}
[5,3,3] (2)

(5.6.6)
(2)

(3.6.6)
720 4320 7200 3600
45 cantitruncated 600-cell
Great rhombated hexacosichoron (grix)

tr{3,3,5}
[5,3,3] (1)

(5.6.6)
(1)

(4.4.5)
(2)

(4.6.6)
1440 8640 14400 7200
44 runcitruncated 600-cell
Prismatorhombated hecatonicosachoron (prahi)

t0,1,3{3,3,5}
[5,3,3] (1)

(3.4.5.4)
(1)

(4.4.5)
(2)

(4.4.6)
(1)

(3.6.6)
2640 13440 18000 7200
[46] omnitruncated 600-cell
(also omnitruncated 120-cell) (gidpixhi)

t0,1,2,3{3,3,5}
[5,3,3] (1)

(4.6.10)
(1)

(4.4.10)
(1)

(4.4.6)
(1)

(4.6.6)
2640 17040 28800 14400

The D4 family

Further information: D4 polytope

This demitesseract family, [31,1,1], introduces no new uniform 4-polytopes, but it is worthy to repeat these alternative constructions. This family has order 12×16=192: 4!/2=12 permutations of the four axes, half as alternated, 24=16 for reflection in each axis. There is one small index subgroups that generating uniform 4-polytopes, [31,1,1]+, order 96.

[31,1,1] uniform 4-polytopes
# Name (Bowers style acronym) Vertex
figure
Coxeter diagram

=
=
Cell counts by location Element counts
Pos. 0

(8)
Pos. 2

(24)
Pos. 1

(8)
Pos. 3

(8)
Pos. Alt
(96)
3 2 1 0
[12] demitesseract
half tesseract
(Same as 16-cell) (hex)
=
h{4,3,3}
(4)

(3.3.3)
(4)

(3.3.3)
16 32 24 8
[17] cantic tesseract
(Same as truncated 16-cell) (thex)
=
h2{4,3,3}
(1)

(3.3.3.3)
(2)

(3.6.6)
(2)

(3.6.6)
24 96 120 48
[11] runcic tesseract
(Same as rectified tesseract) (rit)
=
h3{4,3,3}
(1)

(3.3.3)
(1)

(3.3.3)
(3)

(3.4.3.4)
24 88 96 32
[16] runcicantic tesseract
(Same as bitruncated tesseract) (tah)
=
h2,3{4,3,3}
(1)

(3.6.6)
(1)

(3.6.6)
(2)

(4.6.6)
24 96 96 24

When the 3 bifurcated branch nodes are identically ringed, the symmetry can be increased by 6, as [3[31,1,1]] = [3,4,3], and thus these polytopes are repeated from the 24-cell family.

[3[31,1,1]] uniform 4-polytopes
# Name (Bowers style acronym) Vertex
figure
Coxeter diagram
=
=
Cell counts by location Element counts
Pos. 0,1,3

(24)
Pos. 2

(24)
Pos. Alt
(96)
3 2 1 0
[22] rectified 16-cell
(Same as 24-cell) (ico)
= = =
{31,1,1} = r{3,3,4} = {3,4,3}
(6)

(3.3.3.3)
48 240 288 96
[23] cantellated 16-cell
(Same as rectified 24-cell) (rico)
= = =
r{31,1,1} = rr{3,3,4} = r{3,4,3}
(3)

(3.4.3.4)
(2)

(4.4.4)
24 120 192 96
[24] cantitruncated 16-cell
(Same as truncated 24-cell) (tico)
= = =
t{31,1,1} = tr{3,3,4} = t{3,4,3}
(3)

(4.6.6)
(1)

(4.4.4)
48 240 384 192
[31] snub 24-cell (sadi) = = =
s{31,1,1} = sr{3,3,4} = s{3,4,3}
(3)

(3.3.3.3.3)
(1)

(3.3.3)
(4)

(3.3.3)
144 480 432 96

Here again the snub 24-cell, with the symmetry group [31,1,1]+ this time, represents an alternated truncation of the truncated 24-cell creating 96 new tetrahedra at the position of the deleted vertices. In contrast to its appearance within former groups as partly snubbed 4-polytope, only within this symmetry group it has the full analogy to the Kepler snubs, i.e. the snub cube and the snub dodecahedron.

The grand antiprism

There is one non-Wythoffian uniform convex 4-polytope, known as the grand antiprism, consisting of 20 pentagonal antiprisms forming two perpendicular rings joined by 300 tetrahedra. It is loosely analogous to the three-dimensional antiprisms, which consist of two parallel polygons joined by a band of triangles. Unlike them, however, the grand antiprism is not a member of an infinite family of uniform polytopes.

Its symmetry is the ionic diminished Coxeter group, [[10,2+,10]], order 400.

# Name (Bowers style acronym) Picture Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cells by type Element counts Net
Cells Faces Edges Vertices
47 grand antiprism (gap) No symbol 300
(3.3.3)
20
(3.3.3.5)
320 20 {5}
700 {3}
500 100

Prismatic uniform 4-polytopes

A prismatic polytope is a Cartesian product of two polytopes of lower dimension; familiar examples are the 3-dimensional prisms, which are products of a polygon and a line segment. The prismatic uniform 4-polytopes consist of two infinite families:

Convex polyhedral prisms

The most obvious family of prismatic 4-polytopes is the polyhedral prisms, i.e. products of a polyhedron with a line segment. The cells of such a 4-polytopes are two identical uniform polyhedra lying in parallel hyperplanes (the base cells) and a layer of prisms joining them (the lateral cells). This family includes prisms for the 75 nonprismatic uniform polyhedra (of which 18 are convex; one of these, the cube-prism, is listed above as the tesseract).[citation needed]

There are 18 convex polyhedral prisms created from 5 Platonic solids and 13 Archimedean solids as well as for the infinite families of three-dimensional prisms and antiprisms.[citation needed] The symmetry number of a polyhedral prism is twice that of the base polyhedron.

Tetrahedral prisms: A3 × A1

This prismatic tetrahedral symmetry is [3,3,2], order 48. There are two index 2 subgroups, [(3,3)+,2] and [3,3,2]+, but the second doesn't generate a uniform 4-polytope.

[3,3,2] uniform 4-polytopes
# Name (Bowers style acronym) Picture Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cells by type Element counts Net
Cells Faces Edges Vertices
48 Tetrahedral prism (tepe)
{3,3}×{ }
t0,3{3,3,2}
2
3.3.3
4
3.4.4
6 8 {3}
6 {4}
16 8
49 Truncated tetrahedral prism (tuttip)
t{3,3}×{ }
t0,1,3{3,3,2}
2
3.6.6
4
3.4.4
4
4.4.6
10 8 {3}
18 {4}
8 {6}
48 24
[[3,3],2] uniform 4-polytopes
# Name (Bowers style acronym) Picture Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cells by type Element counts Net
Cells Faces Edges Vertices
[51] Rectified tetrahedral prism
(Same as octahedral prism) (ope)

r{3,3}×{ }
t1,3{3,3,2}
2
3.3.3.3
4
3.4.4
6 16 {3}
12 {4}
30 12
[50] Cantellated tetrahedral prism
(Same as cuboctahedral prism) (cope)

rr{3,3}×{ }
t0,2,3{3,3,2}
2
3.4.3.4
8
3.4.4
6
4.4.4
16 16 {3}
36 {4}
60 24
[54] Cantitruncated tetrahedral prism
(Same as truncated octahedral prism) (tope)

tr{3,3}×{ }
t0,1,2,3{3,3,2}
2
4.6.6
8
6.4.4
6
4.4.4
16 48 {4}
16 {6}
96 48
[59] Snub tetrahedral prism
(Same as icosahedral prism) (ipe)

sr{3,3}×{ }
2
3.3.3.3.3
20
3.4.4
22 40 {3}
30 {4}
72 24
Nonuniform omnisnub tetrahedral antiprism
Pyritohedral icosahedral antiprism (pikap)

2
3.3.3.3.3
8
3.3.3.3
6+24
3.3.3
40 16+96 {3} 96 24

Octahedral prisms: B3 × A1

This prismatic octahedral family symmetry is [4,3,2], order 96. There are 6 subgroups of index 2, order 48 that are expressed in alternated 4-polytopes below. Symmetries are [(4,3)+,2], [1+,4,3,2], [4,3,2+], [4,3+,2], [4,(3,2)+], and [4,3,2]+.

# Name (Bowers style acronym) Picture Vertex
figure
Coxeter diagram
and Schläfli
symbols
Cells by type Element counts Net
Cells Faces Edges Vertices
[10] Cubic prism
(Same as tesseract)
(Same as 4-4 duoprism) (tes)

{4,3}×{ }
t0,3{4,3,2}
2
4.4.4
6
4.4.4
8 24 {4} 32 16
50 Cuboctahedral prism
(Same as cantellated tetrahedral prism) (cope)

r{4,3}×{ }
t1,3{4,3,2}
2
3.4.3.4
8
3.4.4
6
4.4.4
16 16 {3}
36 {4}
60 24
51 Octahedral prism
(Same as rectified tetrahedral prism)
(Same as triangular antiprismatic prism) (ope)

{3,4}×{ }
t2,3{4,3,2}
2
3.3.3.3
8
3.4.4
10 16 {3}
12 {4}
30 12
52 Rhombicuboctahedral prism (sircope)
rr{4,3}×{ }
t0,2,3{4,3,2}
2
3.4.4.4
8
3.4.4
18
4.4.4
28 16 {3}
84 {4}
120 48
53 Truncated cubic prism (ticcup)
t{4,3}×{ }
t0,1,3{4,3,2}
2
3.8.8
8
3.4.4
6
4.4.8
16 16 {3}
36 {4}
12 {8}
96 48
54 Truncated octahedral prism
(Same as cantitruncated tetrahedral prism) (tope)

t{3,4}×{ }
t1,2,3{4,3,2}
2
4.6.6
6
4.4.4
8
4.4.6
16 48 {4}
16 {6}
96 48
55 Truncated cuboctahedral prism (gircope)
tr{4,3}×{ }
t0,1,2,3{4,3,2}
2
4.6.8
12
4.4.4
8
4.4.6
6
4.4.8
28 96 {4}
16 {6}
12 {8}
192 96
56 Snub cubic prism (sniccup)
sr{4,3}×{ }
2
3.3.3.3.4
32
3.4.4
6
4.4.4
40 64 {3}
72 {4}
144 48
[48] Tetrahedral prism (tepe)
h{4,3}×{ }
2
3.3.3
4
3.4.4
6 8 {3}
6 {4}
16 8
[49] Truncated tetrahedral prism (tuttip)
h2{4,3}×{ }
2
3.3.6
4
3.4.4
4
4.4.6
6 8 {3}
6 {4}
16 8
[50] Cuboctahedral prism (cope)