Names | |
---|---|
IUPAC name
Potassium 6-methyl-2,2-dioxo-2H-1,2λ6,3-oxathiazin-4-olate
| |
Other names
| |
Identifiers | |
3D model (JSmol)
|
|
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.054.269 |
EC Number |
|
E number | E950 (glazing agents, ...) |
PubChem CID
|
|
UNII | |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C4H4KNO4S | |
Molar mass | 201.242 |
Appearance | white crystalline powder |
Density | 1.81 g/cm3 |
Melting point | 225 °C (437 °F; 498 K) |
270 g/L at 20 °C | |
Hazards | |
NFPA 704 (fire diamond) | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Acesulfame potassium (UK: /æsɪˈsʌlfeɪm/,[1] US: /ˌeɪsiːˈsʌlfeɪm/ AY-see-SUL-faym[2] or /ˌæsəˈsʌlfeɪm/[1]), also known as acesulfame K (K is the symbol for potassium) or Ace K, is a synthetic calorie-free sugar substitute (artificial sweetener) often marketed under the trade names Sunett and Sweet One. In the European Union, it is known under the E number (additive code) E950.[3] It was discovered accidentally in 1967 by German chemist Karl Clauss at Hoechst AG (now Nutrinova).[4] In chemical structure, acesulfame potassium is the potassium salt of 6-methyl-1,2,3-oxathiazine-4(3H)-one 2,2-dioxide. It is a white crystalline powder with molecular formula C
4H
4KNO
4S and a molecular weight of 201.24 g/mol.[5]
Acesulfame K is 200 times sweeter than sucrose (common sugar), as sweet as aspartame, about two-thirds as sweet as saccharin, and one-third as sweet as sucralose. Like saccharin, it has a slightly bitter aftertaste, especially at high concentrations. Kraft Foods patented the use of sodium ferulate to mask acesulfame's aftertaste.[6] Acesulfame K is often blended with other sweeteners (usually sucralose or aspartame). These blends are reputed to give a more sucrose-like taste whereby each sweetener masks the other's aftertaste, or exhibits a synergistic effect by which the blend is sweeter than its components.[7] Acesulfame potassium has a smaller particle size than sucrose, allowing for its mixtures with other sweeteners to be more uniform.[8]
Unlike aspartame, acesulfame K is stable under heat, even under moderately acidic or basic conditions, allowing it to be used as a food additive in baking, or in products that require a long shelf life. Although acesulfame potassium has a stable shelf life, it can eventually degrade to acetoacetamide, which is toxic in high doses.[9] In carbonated drinks, it is almost always used in conjunction with another sweetener, such as aspartame or sucralose. It is also used as a sweetener in protein shakes and pharmaceutical products,[10] especially chewable and liquid medications, where it can make the active ingredients more palatable. The acceptable daily intake of acesulfame potassium is listed as 15 mg/kg/day.[11]
Acesulfame potassium is widely used in the human diet and excreted by the kidneys. It thus has been used by researchers as a marker to estimate to what degree swimming pools are contaminated by urine.[12]
Other names for acesulfame K are potassium acesulfamate, potassium salt of 6-methyl-1,2,3-oxothiazin-4(3H)-one-2,3-dioxide, and potassium 6-methyl-1,2,3-oxathiazine-4(3H)-one-3-ate-2,2-dioxide.
Acesulfame potassium provides a sweet taste with no caloric value. There is no high-quality evidence that using acesulfame potassium as a sweetener affects body weight or body mass index (BMI).[13][14][15]
Acesulfame potassium was developed after the accidental discovery of a similar compound (5,6-dimethyl-1,2,3-oxathiazin-4(3H)-one 2,2-dioxide) in 1967 by Karl Clauss and Harald Jensen at Hoechst AG.[16][17] After accidentally dipping his fingers into the chemicals with which he was working, Clauss licked them to pick up a piece of paper.[18] Clauss is the inventor listed on a United States patent issued in 1975 to the assignee Hoechst Aktiengesellschaft for one process of manufacturing acesulfame potassium.[19] Subsequent research showed a number of compounds with the same basic ring structure had varying levels of sweetness. 6-methyl-1,2,3-oxathiazine-4(3H)-one 2,2-dioxide had particularly favourable taste characteristics and was relatively easy to synthesize, so it was singled out for further research, and received its generic name (acesulfame-K) from the World Health Organization in 1978.[16] Acesulfame potassium first received approval for table top use in the United States in 1988.[11]
The United States Food and Drug Administration (FDA) approved its general use as a safe food additive in 1988,[20] and maintains that safety assessment, as of 2023.[21] In a 2000 scientific review, the European Food Safety Authority determined that acesulfame K is safe in typical consumption amounts, and does not increase the risk of diseases.[22]