An afforestation project in Rand Wood, Lincolnshire, England

Afforestation is the establishment of a forest or stand of trees (forestation) in an area where there was no recent tree cover.[1] In comparison, reforestation means re-establishing forest that have either been cut down or lost due to natural causes, such as fire, storm, etc.[2] There are three types of afforestation: Natural regeneration, agroforestry and commercial plantations.[3] The intended benefits of afforestation are numerous. In the context of climate change, afforestation can be helpful for climate change mitigation through the route of carbon sequestration. Afforestation can also improve the local climate through increased rainfall and by being a barrier against high winds. The additional trees can also prevent or reduce topsoil erosion (from water and wind), floods and landslides. Finally, additional trees can be a habitat for wildlife, and provide employment and wood products.[3]

Several countries implement afforestation programs to increase carbon dioxide removal from forests and to reduce desertification. Critique has been levelled in the case of afforestation on grasslands and savanna areas. Here carbon sequestration estimates often don't consider adequately carbon reductions in soils and slowing tree growth over time. Also afforestation can negatively affect biodiversity through increasing fragmentation and edge effects for the habitat remaining outside the planted area.


The term afforestation means establishing new forest on lands that were not forest before (e. g. abandoned agriculture).[1] The same definition in other words states that afforestation is "conversion to forest of land that historically has not contained forests".[4]: 1794 

In comparison, reforestation means the "conversion to forest of land that has previously contained forests but that has been converted to some other use".[4]: 1812 


There are three types of Afforestation:[3]

  1. Natural regeneration (where native trees are planted as seeds; this creates new ecosystems and increases carbon sequestration).
  2. agroforestry (this is essentially an agricultural activity carried out in order to grow harvestable crops such as fruits and nuts).
  3. Commercial plantations (carried out in order to produce wood and wood-pulp products; this can be seen as an alternative to cutting down naturally-occurring forests).


The process of afforestation begins with site selection. Several environmental factors of the site must be analyzed, including climate, soil, vegetation, and human activity.[5] These factors will determine the quality of the site, what species of trees should be planted, and what planting method should be used.[5]

After the forest site has been assessed, the area must be prepared for planting. Preparation can involve a variety of mechanical or chemical methods, such as chopping, mounding, bedding, herbicides, and prescribed burning.[6] Once the site is prepared, planting can take place. One method for planting is direct seeding, which involves sowing seeds directly into the forest floor.[7] Another is seedling planting, which is similar to direct seeding except that seedlings already have an established root system.[8] Afforestation by cutting is an option for tree species that can reproduce asexually, where a piece of a tree stem, branch, root, or leaves can be planted onto the forest floor and sprout successfully.[9] Sometimes special tools, such as a tree planting bar, are used to make planting of trees easier and faster.[10]


See also: Reforestation § For climate change mitigation

There are several benefits from afforestation such as carbon sequestration, increasing rainfall, prevention of topsoil erosion (from water and wind), flood and landslide mitigation, barriers against high winds, shelter for wildlife, employment and alternative sources of wood products.[3]

Climate change mitigation

Afforestation boasts many climate-related benefits. Afforestation helps to slow down global warming by reducing CO2 in the atmosphere and introducing more O2.[11] Trees are carbon sinks that remove CO2 from the atmosphere via photosynthesis and convert it into biomass.[12]


The rate of net forest loss decreased substantially over the period 1990–2020 due to a reduction in deforestation in some countries, plus increases in forest area in others through afforestation and the natural expansion of forests.[13] A 2019 study of the global potential for tree restoration showed that there is space for at least 9 million km2 of new forests worldwide, which is a 25% increase from current conditions.[14] This forested area could store up to 205 gigatons of carbon or 25% of the atmosphere's current carbon pool by reducing CO2 in the atmosphere and introducing more O2.

Environmental benefits

Afforestation provides other environmental benefits, including increasing the soil quality and its organic carbon levels, reducing the risk of erosion and desertification.[11] The planting of trees in urban areas is also able to reduce air pollution via the trees' absorption and filtration of pollutants, including carbon monoxide, sulfur dioxide, and ozone, in addition to CO2.[12]

Afforestation protects the biodiversity of plants and animals which allows the sustenance of ecosystems that provide clean air, soil fertilization, etc.[15]

Local climate and rain

A 2017 study gives the first observational evidence that the southern Amazon rainforest triggers its own rainy season using water vapor from plant leaves, which then forms clouds above it.[16] These findings help explain why deforestation in this region is linked with reduced rainfall. A 2009 study hypothesizes that forest cover plays a much greater role in determining rainfall than previously recognized.[17] It explains how forested regions generate large-scale flows in atmospheric water vapor and further underscores the benefit of afforestation in currently barren regions of the world.


See also: Reforestation § Criticism

Afforestation in grasslands

Tree-planting campaigns are criticised for sometimes targeting areas where forests would not naturally occur, such as grassland and savanna biomes.[18][19][20] Carbon sequestration forecasts of afforestation programmes often insufficiently consider possible carbon reductions in soils as well as slowing tree growth over time.[21]

Impact on biodiversity

Afforestation can negatively affect biodiversity through increasing fragmentation and edge effects for the habitat remaining outside the planted area. New forest plantations can introduce generalist predators that would otherwise not be found in open habitat into the covered area, which could detrimentally increase predation rates on the native species of the area. A study by scientists at the British Trust for Ornithology into the decline of British populations of Eurasian curlew found that afforestation had impacted curlew populations through fragmentation of their naturally open grassland habitats and increases in generalist predators.[22]

Surface albedo

Questions have also been raised in the scientific community regarding how global afforestation could affect the surface albedo of Earth. The canopy cover of mature trees could make the surface albedo darker, which causes more heat to be absorbed, potentially raising the temperature of the planet. This is particularly relevant in parts of the world with high levels of snow cover, due to the more significant difference in albedo between highly reflective white snow and more darker forest cover which absorbs more solar radiation.[23][24]



In Adelaide, South Australia (a city of 1.3 million as of June 2016), Premier Mike Rann (2002 to 2011) launched an urban forest initiative in 2003 to plant 3 million native trees and shrubs by 2014 on 300 project sites across the metro area.[25] Thousands of Adelaide citizens participated in community planting days on sites including parks, reserves, transport corridors, schools, water courses and coastline. Only native trees were planted to ensure genetic integrity. Rann said the project aimed to beautify and cool the city and make it more livable, improve air and water quality, and reduce Adelaide's greenhouse gas emissions by 600,000 tonnes of CO2 a year.[26]


In 2003, the government of Canada created a four-year project called the Forest 2020 Plantation Development and Assessment Initiative, which involved planting 6000 ha of fast-growing forests on non-forested lands countrywide. These plantations were used to analyze how afforestation can help to increase carbon sequestration and mitigate greenhouse gas (GHG) emissions while also considering the economic and investment attractiveness of afforestation. The results of the initiative showed that although there is not enough available land in Canada to completely offset the country's GHG emissions, afforestation can be useful mitigation technique for meeting GHG emission goals, especially until permanent, more advanced carbon storage technology becomes available.[27]

On December 14, 2020, Canada's Minister of Natural Resources Seamus O'Regan announced the federal government's investment of $3.16 billion to plant two billion trees over the next 10 years. This plan aims to reduce greenhouse gas emissions by an estimated 12 megatonnes by 2050.[28][29]


Strips of forest are planted along hundreds of kilometers of the Yangtze levees in Hubei province[30]
German Embassy Project Haloxylon ammodendron, Xinjiang, China

A law in China from 1981 requires that every school student over the age of 11 plants at least one tree per year.[31] But average success rates, especially in state-sponsored plantings, remain relatively low. And even the properly planted trees have had great difficulty surviving the combined impacts of prolonged droughts, pest infestation, and fires. Nonetheless, China had the highest afforestation rate of any country or region in the world, with 4.77 million hectares (47,000 square kilometers) of afforestation in 2008.[32] Although China set official goals for reforestation, these had an 80-year time horizon and were not being significantly met by 2008. China is trying to correct these problems with projects such as the Green Wall of China, which aims to replant forests and halt the expansion of the Gobi Desert.

According to the 2021 government work report, forest coverage will reach 24 percent based on the main targets and tasks for the 14th Five-Year Plan period.[33] According to the National Forestry and Grassland Administration, China's forest coverage rate increased from 12 percent in the early 1980s to 23 percent by August 2021.

According to Carbon Brief, China planted the largest amount of new forest out of any country between 1990 and 2015, facilitated by the country's Grain for Green program started in 1999, by investing more than $100 billion in afforestation programs and planting more than 35 billion trees across 12 provinces. By 2015, the amount of planted forest in China covered 79 million hectares.

From 2011 to 2016, the city Dongying in Shandong province forested over 13,800 hectares of saline soil through the Shandong Ecological Afforestation Project, which was launched with support from the World Bank.[34] In 2017, the Saihanba Afforestation Community won the UN Champions of the Earth Award in the Inspiration and Action category for "transforming degraded land into a lush paradise".[35]

The successful afforestation of the Loess Plateau involved collaborative efforts by international and domestic professionals alongside villagers. Through this initiative, millions of villagers across four of China's poorest provinces were able to improve farming practices and increase incomes and employment, alleviating poverty.[36] In addition, the careful selection of trees ensured a healthy, self-sustainable ecosystem between tree and soil which facilitated a net carbon sink.[37] The Loess Plateau, although successful, was costly, reaching almost US$500 million.[36]

This contrasts with more recent initiatives where the results have not been as favorable. In an attempt to make afforestation both low-cost and less time-consuming, China shifted towards monoculture of mostly red pine trees. However, this did not adequately take into consideration environmental structure and led to increased soil erosion, desertification, sand/dust storms and short-lived trees.[37] This has reduced China's environmental sustainability index (ESI)[38] to one of the lowest in the world.[39]

Regarding the effects of afforestation on long-term carbon stocks and carbon sequestration these decrease when trees are less than 5 years old and increase quickly thereafter.[40] This means trees from monoculture planting that do not survive never reach full potential for carbon sequestration to offset China's carbon output. Overall, there is a possibility for afforestation to balance carbon levels and aid carbon neutrality, but several challenges still remain which hinder an all encompassing effort.[41] Over 69.3 million hectares of forest were planted across China from 1999 to 2013. This large-scale reforestation contributed to China’s forests sequestering 1.11 ± 0.38 Gt carbon per yr over the period 2010 to 2016. This amounted to about 45 percent of the yearly greenhouse gas emissions during that period in China.[42]


Afforestation on former colliery land near Cwm-Hwnt, Wales

Europe deforested more than half of its forested areas over the last 6000 years.[43] The European Union (EU) has paid farmers for afforestation since 1990, offering grants to turn farmland into forest and payments for the management of forest.[44] As part of the Green Deal,[45] the EU program "3 Billion Tree Planting Pledge by 2030"[46] provides direction on afforestation of previous farmland in addition to reforestation.  

According to Food and Agriculture Organization statistics, Spain had the third fastest afforestation rate in Europe in the 1990-2005 period, after Iceland and Ireland. In those years, a total of 44,360 square kilometers were afforested, and the total forest cover rose from 13.5 to 17.9 million hectares. In 1990, forests covered 26.6% of the Spanish territory. As of 2007, that figure had risen to 36.6%. Spain today has the fifth largest forest area in the European Union.[47]

In January 2013, the UK government set a target of 12% woodland cover in England by 2060, up from the then 10%.[48] In Wales the National Assembly for Wales has set a target of 19% woodland cover, up from 15%. Government-backed initiatives such as the Woodland Carbon Code are intended to support this objective by encouraging corporations and landowners to create new woodland to offset their carbon emissions. Charitable groups such as Trees for Life (Scotland) also contribute to afforestation and reforestation efforts in the UK.


See also: Forestry in India

Afforestation in South India

As of 2023 the total forest and tree cover in India was 22%.[49] The forests of India are grouped into 5 major categories and 16 types based on biophysical criteria. 38% of the forest is categorized as subtropical dry deciduous and 30% as tropical moist deciduous and other smaller groups.

In 2016 the Indian government passed the CAMPA (Compensatory Afforestation Fund Management and Planning Authority) law, allowing about 40 thousand crores rupees (almost $6 Billion) to go to Indian states for planting trees. The funds were to be used for treatment of catchment areas, assisted natural generation, forest management, wildlife protection and management, relocation of villages from protected areas, management of human-wildlife conflicts, training and awareness generation, supply of wood saving devices and allied activities. Increasing the tree cover would also help in creating additional carbon sinks to meet the nation's Intended Nationally Determined Contribution (INDC) of 2.5 to 3 billion tonnes of carbon dioxide equivalent through additional forest and tree cover by 2030 - part of India's efforts to combat climate change.

In 2016 the Maharashtra government planted almost 20,000,000 saplings and pledged to plant another 30,000,000 the following year. In 2019, 220 million trees were planted in a single day in the Indian state of Uttar Pradesh.[50][51]

Fourth year of a genetically modified forest in Iran, planted by Aras GED through commercial afforestation


Trees in the Negev Desert. Man-made dunes (here a liman) help keep in rainwater, creating an oasis.

Main article: Jewish National Fund § Afforestation

With wood production as a main objective, monocultures of Aleppo pine were vigorously planted between 1948 and the 1970s. Following a massive collapse of this species in the 1990s, due to attacks by the insect pine blast scale, the Aleppo pine was gradually replaced by Pinus brutia.[52] Since the 1990s there has been a trend towards more ecological approaches planting mixed forests combining pines with broadleaf Mediterranean species e.g. oak, pistachio, carob, olive, arbutus and buckthorn.[53] About 250 million trees have been planted through the JNF across Israel since 1990.Tree coverage increased from 2% in 1948 to over 8% at present.[54]

United States

In the 1800s people moving westward in the US encountered the Great Plains – land with fertile soil, a growing population and a demand for timber but with few trees to supply it. So tree planting was encouraged along homesteads. Arbor Day was founded in 1872 by Julius Sterling Morton in Nebraska City.[55] By the 1930s the Dust Bowl environmental disaster signified a reason for adding significant new tree cover. Public works programs under the New Deal saw the planting of 18,000 miles of windbreaks stretching from North Dakota to Texas to fight soil erosion (see Great Plains Shelterbelt).[56]

See also


  1. ^ a b Terms and definitions – FRA 2020 (PDF). Rome: FAO. 2018. Archived (PDF) from the original on 9 August 2019.
  2. ^ "Reforestation - Definitions from". Retrieved 27 April 2008.
  3. ^ a b c d Lark, Rachel (2 October 2023). "The Importance of Afforestation". Environment Co. Retrieved 4 January 2024.
  4. ^ a b IPCC, 2022: Annex I: Glossary [van Diemen, R., J.B.R. Matthews, V. Möller, J.S. Fuglestvedt, V. Masson-Delmotte, C.  Méndez, A. Reisinger, S. Semenov (eds)]. In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926.020
  5. ^ a b Duan, Jie; Abduwali, Dilnur (10 March 2021), Cristina Gonçalves, Ana (ed.), "Basic Theory and Methods of Afforestation", Silviculture, IntechOpen, doi:10.5772/intechopen.96164, ISBN 978-1-83968-448-7, retrieved 25 March 2021
  6. ^ Knapp, Benjamin O.; Wang, G. Geoff; Walker, Joan L.; Cohen, Susan (1 May 2006). "Effects of site preparation treatments on early growth and survival of planted longleaf pine (Pinus palustris Mill.) seedlings in North Carolina". Forest Ecology and Management. 226 (1): 122–128. doi:10.1016/j.foreco.2006.01.029. ISSN 0378-1127.
  7. ^ Grossnickle, Steven C.; Ivetić, Vladan (30 December 2017). "Direct Seeding in Reforestation – A Field Performance Review". Reforesta (4): 94–142. doi:10.21750/REFOR.4.07.46. ISSN 2466-4367.
  8. ^ Dey, Daniel C.; Jacobs, Douglass; McNabb, Ken; Miller, Gary; Baldwin, V.; Foster, G. (1 February 2008). "Artificial Regeneration of Major Oak (Quercus) Species in the Eastern United States—A Review of the Literature". Forest Science. 54 (1): 77–106. doi:10.1093/forestscience/54.1.77. ISSN 0015-749X.
  9. ^ Kauffman, J. Boone (1991). "Survival by Sprouting Following Fire in Tropical Forests of the Eastern Amazon". Biotropica. 23 (3): 219–224. Bibcode:1991Biotr..23..219K. doi:10.2307/2388198. ISSN 0006-3606. JSTOR 2388198.
  10. ^ Sweeney, Bernard W.; Czapka, Stephen J.; Petrow, L. Carol A. (1 May 2007). "How Planting Method, Weed Abatement, and Herbivory Affect Afforestation Success". Southern Journal of Applied Forestry. 31 (2): 85–92. doi:10.1093/sjaf/31.2.85. ISSN 0148-4419.
  11. ^ a b Suganuma, H.; Egashira, Y.; Utsugi, H.; Kojima, T. (July 2012). "Estimation of CO2 reduction amount by arid land afforestation in Western Australia". 2012 IEEE International Geoscience and Remote Sensing Symposium: 7216–7219. doi:10.1109/IGARSS.2012.6351997. S2CID 31123240.
  12. ^ a b Freedman, Bill; Keith, Todd (11 April 1996). "Planting trees for carbon credits: a discussion of context, issues, feasibility, and environmental benefits". Environmental Reviews. 4 (2): 100–111. doi:10.1139/a96-006.
  13. ^ Global Forest Resources Assessment 2020 – Key findings. FAO. 2020. doi:10.4060/ca8753en. ISBN 978-92-5-132581-0.
  14. ^ Bastin, Jean-Francois; Finegold, Yelena; Garcia, Claude; Mollicone, Danilo; Rezende, Marcelo; Routh, Devin; Zohner, Constantin M.; Crowther, Thomas W. (5 July 2019). "The global tree restoration potential". Science. 365 (6448): 76–79. Bibcode:2019Sci...365...76B. doi:10.1126/science.aax0848. ISSN 0036-8075. PMID 31273120.
  15. ^ Why is biodiversity important? (2018). Retrieved April 28, 2023, from
  16. ^ Jonathon S. Wright, Rong Fu, John R. Worden, Sudip Chakraborty, Nicholas E. Clinton, Camille Risi, Ying Sun, Lei Yin, Rainforest-initiated wet season onset, Proceedings of the National Academy of Sciences Aug 2017, 114 (32) 8481-8486; DOI: 10.1073/pnas.1621516114
  17. ^ Douglas Sheil, Daniel Murdiyarso, How Forests Attract Rain: An Examination of a New Hypothesis; BioScience, Volume 59, Issue 4, April 2009, Pages 341–347,
  18. ^ Dasgupta, Shreya (1 June 2021). "Many Tree-Planting Campaigns Are Based on Flawed Science". The Wire Science. Retrieved 12 June 2021.
  19. ^ "Can tree campaigns curb climate change without harming grasslands?". Scienceline. 28 May 2021. Retrieved 12 June 2021.
  20. ^ Bond, William J.; Stevens, Nicola; Midgley, Guy F.; Lehmann, Caroline E.R. (November 2019). "The Trouble with Trees: Afforestation Plans for Africa". Trends in Ecology & Evolution. 34 (11): 963–965. doi:10.1016/j.tree.2019.08.003. hdl:20.500.11820/ad569ac5-dc12-4420-9517-d8f310ede95e. PMID 31515117. S2CID 202568025.
  21. ^ Maschler, Julia; Bialic-Murphy, Lalasia; Wan, Joe; Andresen, Louise C.; Zohner, Constantin M.; Reich, Peter B.; Lüscher, Andreas; Schneider, Manuel K.; Müller, Christoph (2022), Data from: Links across ecological scales: Plant biomass responses to elevated CO2, Dryad, doi:10.5061/dryad.hhmgqnkk4, retrieved 3 October 2022
  22. ^ Franks, Samantha E.; Douglas, David J. T.; Gillings, Simon; Pearce-Higgins, James W. (3 July 2017). "Environmental correlates of breeding abundance and population change of Eurasian Curlew Numenius arquata in Britain". Bird Study. 64 (3): 393–409. Bibcode:2017BirdS..64..393F. doi:10.1080/00063657.2017.1359233. ISSN 0006-3657. S2CID 89966879.
  23. ^ Mykleby, P. M.; Snyder, P. K.; Twine, T. E. (16 March 2017). "Quantifying the trade-off between carbon sequestration and albedo in midlatitude and high-latitude North American forests". Geophysical Research Letters. 44 (5): 2493–2501. Bibcode:2017GeoRL..44.2493M. doi:10.1002/2016GL071459. ISSN 0094-8276. S2CID 133588291.
  24. ^ Rohatyn, Shani; Yakir, Dan; Rotenberg, Eyal; Carmel, Yohay (23 September 2022). "Limited climate change mitigation potential through forestation of the vast dryland regions". Science. 377 (6613): 1436–1439. Bibcode:2022Sci...377.1436R. doi:10.1126/science.abm9684. ISSN 0036-8075. PMID 36137038. S2CID 252465486.
  25. ^ "Projects: Adelaide Greening Strategy".
  26. ^ "Carbon Neutral Adelaide Status Report 2021 Final" (PDF).
  27. ^ Dominy, S.W.J. (June 2010). "A retrospective and lessons learned from Natural Resources Canada's Forest 2020 afforestation initiative". The Forestry Chronicle. 86 (3): 339–347. doi:10.5558/tfc86339-3.
  28. ^ "2 Billion Trees Program". Government of Canada. 16 December 2021. Retrieved 24 February 2022.
  29. ^ "Canada calls for proposals to support 2 Billion Trees program". Annex Business Media. Canadian Forest Industries magazine. 20 December 2021. Retrieved 24 February 2022.
  30. ^ 省河道堤防建设管理局2016年工作要点 Archived 2018-04-01 at the Wayback Machine (The work goals of the provincial waterway flood protection levee administration for 2016), 2016-02-17
  31. ^ China Forest Law Amendment
  32. ^ Yang, Ling. "China to plant more trees in 2009". ChinaView. Xinhua News Agency. Archived from the original on 10 February 2009. Retrieved 23 October 2014.
  33. ^ "Outline of the 14th Five-Year Plan (2021-2025) for National Economic and Social Development and Vision 2035 of the People's Republic of China_ News_ 福建省人民政府门户网站". Retrieved 29 September 2023.
  34. ^ "China: Afforestation Project in Shandong Improves Environment and Farmers' Incomes". World Bank. Retrieved 3 February 2024.
  35. ^ Environment, U. N. (22 August 2019). "Saihanba Afforestation Community | Champions of the Earth". Retrieved 3 February 2024.
  36. ^ a b "Restoring China's Loess Plateau". World Bank. Retrieved 1 June 2023.
  37. ^ a b Li, Yifei; Shapiro, Judith (2020). China goes green: coercive environmentalism for a troubled planet = Zhong guo zou xiang lü se. Cambridge, UK Medford, MA: Polity. ISBN 978-1-5095-4312-0.
  38. ^ Schmiedeknecht, Maud H. (2013), "Environmental Sustainability Index", in Idowu, Samuel O.; Capaldi, Nicholas; Zu, Liangrong; Gupta, Ananda Das (eds.), Encyclopedia of Corporate Social Responsibility, Berlin, Heidelberg: Springer, pp. 1017–1024, doi:10.1007/978-3-642-28036-8_116, ISBN 978-3-642-28036-8, retrieved 3 February 2024
  39. ^ Cao, Shixiong; Chen, Li; Shankman, David; Wang, Chunmei; Wang, Xiongbin; Zhang, Hong (1 February 2011). "Excessive reliance on afforestation in China's arid and semi-arid regions: Lessons in ecological restoration". Earth-Science Reviews. 104 (4): 240–245. Bibcode:2011ESRv..104..240C. doi:10.1016/j.earscirev.2010.11.002. ISSN 0012-8252.
  40. ^ Shi, Jun; Cui, Linli (30 November 2010). "Soil carbon change and its affecting factors following afforestation in China". Landscape and Urban Planning. 98 (2): 75–85. doi:10.1016/j.landurbplan.2010.07.011. ISSN 0169-2046.
  41. ^ Xu, Deying (1 January 1995). "The potential for reducing atmospheric carbon by large-scale afforestation in China and related cost/benefit analysis". Biomass and Bioenergy. Forestry and Climate Change. 8 (5): 337–344. Bibcode:1995BmBe....8..337X. doi:10.1016/0961-9534(95)00026-7. ISSN 0961-9534.
  42. ^ Zhang, Xianghua; Busch, Jonah; Huang, Yingli; Fleskens, Luuk; Qin, Huiyan; Qiao, Zhenhua (2023). "Cost of mitigating climate change through reforestation in China". Frontiers in Forests and Global Change. 6. Bibcode:2023FrFGC...629216Z. doi:10.3389/ffgc.2023.1229216. ISSN 2624-893X.
  43. ^ Roberts, N.; Fyfe, R. M.; Woodbridge, J.; Gaillard, M.-J.; Davis, B. a. S.; Kaplan, J. O.; Marquer, L.; Mazier, F.; Nielsen, A. B.; Sugita, S.; Trondman, A.-K.; Leydet, M. (15 January 2018). "Europe's lost forests: a pollen-based synthesis for the last 11,000 years". Scientific Reports. 8 (1): 716. Bibcode:2018NatSR...8..716R. doi:10.1038/s41598-017-18646-7. ISSN 2045-2322. PMC 5768782. PMID 29335417.
  44. ^
  45. ^ "The European Green Deal - European Commission". 14 July 2021. Retrieved 4 March 2024.
  46. ^
  47. ^ Vadell, Enric; de-Miguel, Sergio; Pemán, Jesús (1 September 2016). "Large-scale reforestation and afforestation policy in Spain: A historical review of its underlying ecological, socioeconomic and political dynamics". Land Use Policy. 55: 37–48. doi:10.1016/j.landusepol.2016.03.017. ISSN 0264-8377. S2CID 155200935.
  48. ^ Westaway, Sally; Grange, Ian; Smith, Jo; Smith, Laurence G. (1 February 2023). "Meeting tree planting targets on the UK's path to net-zero: A review of lessons learnt from 100 years of land use policies". Land Use Policy. 125: 106502. doi:10.1016/j.landusepol.2022.106502. ISSN 0264-8377.
  49. ^ "Total forest and tree cover increased by 2261 square kilometre in India as per the India State of Forest Report (ISFR) 2021". Retrieved 3 February 2024.
  50. ^ "Uttar Pradesh plants 220 million trees in one day". The Hindu. 13 August 2019. ISSN 0971-751X. Retrieved 12 January 2022.
  51. ^ "Indians Plant 220 Million Trees In A Single Day". HuffPost. 11 August 2019. Retrieved 12 January 2022.
  52. ^ Pritchard, H. W (1 January 2001). "Ne'eman G, Traubaud L, eds. 2000. Ecology, biogeography and management of Pinus halepensis and P. brutia forest ecosystems in the Mediterranean Basin. 404 pp. Leiden: Backhuys Publishers. $120 (hardback)". Annals of Botany. 87 (1): 132–133. doi:10.1006/anbo.2000.1313. ISSN 0305-7364.
  53. ^ Perevolotsky, Avi; Sheffer, Efrat (1 December 2009). "Forest management in Israel—The ecological alternative". Israel Journal of Plant Sciences. 57 (1): 35–48. Bibcode:2009IsJPS..57...35P. doi:10.1560/IJPS.57.1-2.35 (inactive 12 February 2024). ISSN 0792-9978.((cite journal)): CS1 maint: DOI inactive as of February 2024 (link)
  54. ^ "The Reforestation of Israel - Aardvark Israel". 28 November 2017. Retrieved 3 February 2024.
  55. ^ "History at". Retrieved 4 March 2024.
  56. ^