The topic of this article may not meet Wikipedia's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: "Kaniadakis Gamma distribution" – news · newspapers · books · scholar · JSTOR (February 2023) (Learn how and when to remove this template message)
Parameters Probability density function $0\leq \kappa <1$ $\alpha >0$ shape (real) $\beta >0$ rate (real) $0<\nu <1/\kappa$ $x\in [0,+\infty )$ $(1+\kappa \nu )(2\kappa )^{\nu }{\frac {\Gamma {\big (}{\frac {1}{2\kappa ))+{\frac {\nu }{2)){\big ))){\Gamma {\big (}{\frac {1}{2\kappa ))-{\frac {\nu }{2)){\big )))}{\frac {\alpha \beta ^{\nu )){\Gamma {\big (}\nu {\big )))}x^{\alpha \nu -1}\exp _{\kappa }(-\beta x^{\alpha })$ $(1+\kappa \nu )(2\kappa )^{\nu }{\frac {\Gamma {\big (}{\frac {1}{2\kappa ))+{\frac {\nu }{2)){\big ))){\Gamma {\big (}{\frac {1}{2\kappa ))-{\frac {\nu }{2)){\big )))}{\frac {\alpha \beta ^{\nu )){\Gamma {\big (}\nu {\big )))}\int _{0}^{x}z^{\alpha \nu -1}\exp _{\kappa }(-\beta z^{\alpha })dz$ $\beta ^{-1/\alpha }{\Bigg (}\nu -{\frac {1}{\alpha )){\Bigg )}^{\frac {1}{\alpha )){\Bigg [}1-\kappa ^{2}{\bigg (}\nu -{\frac {1}{\alpha )){\bigg )}^{2}{\Bigg ]}^{-{\frac {1}{2\alpha )))$ $\beta ^{-m/\alpha }{\frac {(1+\kappa \nu )(2\kappa )^{-m/\alpha )){1+\kappa {\big (}\nu +{\frac {m}{\alpha )){\big )))}{\frac {\Gamma {\big (}\nu +{\frac {m}{\alpha )){\big ))){\Gamma (\nu ))){\frac {\Gamma {\Big (}{\frac {1}{2\kappa ))+{\frac {\nu }{2)){\Big ))){\Gamma {\Big (}{\frac {1}{2\kappa ))-{\frac {\nu }{2)){\Big )))}{\frac {\Gamma {\Big (}{\frac {1}{2\kappa ))-{\frac {\nu }{2))-{\frac {m}{2\alpha )){\Big ))){\Gamma {\Big (}{\frac {1}{2\kappa ))+{\frac {\nu }{2))+{\frac {m}{2\alpha )){\Big ))))$ The Kaniadakis Generalized Gamma distribution (or κ-Generalized Gamma distribution) is a four-parameter family of continuous statistical distributions, supported on a semi-infinite interval [0,∞), which arising from the Kaniadakis statistics. It is one example of a Kaniadakis distribution. The κ-Gamma is a deformation of the Generalized Gamma distribution.

## Definitions

### Probability density function

The Kaniadakis κ-Gamma distribution has the following probability density function:

$f_{_{\kappa ))(x)=(1+\kappa \nu )(2\kappa )^{\nu }{\frac {\Gamma {\big (}{\frac {1}{2\kappa ))+{\frac {\nu }{2)){\big ))){\Gamma {\big (}{\frac {1}{2\kappa ))-{\frac {\nu }{2)){\big )))}{\frac {\alpha \beta ^{\nu )){\Gamma {\big (}\nu {\big )))}x^{\alpha \nu -1}\exp _{\kappa }(-\beta x^{\alpha })$ valid for $x\geq 0$ , where $0\leq |\kappa |<1$ is the entropic index associated with the Kaniadakis entropy, $0<\nu <1/\kappa$ , $\beta >0$ is the scale parameter, and $\alpha >0$ is the shape parameter.

The ordinary generalized Gamma distribution is recovered as $\kappa \rightarrow 0$ : $f_{_{0))(x)={\frac {|\alpha |\beta ^{\nu )){\Gamma \left(\nu \right)))x^{\alpha \nu -1}\exp _{\kappa }(-\beta x^{\alpha })$ .

### Cumulative distribution function

The cumulative distribution function of κ-Gamma distribution assumes the form:

$F_{\kappa }(x)=(1+\kappa \nu )(2\kappa )^{\nu }{\frac {\Gamma {\big (}{\frac {1}{2\kappa ))+{\frac {\nu }{2)){\big ))){\Gamma {\big (}{\frac {1}{2\kappa ))-{\frac {\nu }{2)){\big )))}{\frac {\alpha \beta ^{\nu )){\Gamma {\big (}\nu {\big )))}\int _{0}^{x}z^{\alpha \nu -1}\exp _{\kappa }(-\beta z^{\alpha })dz$ valid for $x\geq 0$ , where $0\leq |\kappa |<1$ . The cumulative Generalized Gamma distribution is recovered in the classical limit $\kappa \rightarrow 0$ .

## Properties

### Moments and mode

The κ-Gamma distribution has moment of order $m$ given by

$\operatorname {E} [X^{m}]=\beta ^{-m/\alpha }{\frac {(1+\kappa \nu )(2\kappa )^{-m/\alpha )){1+\kappa {\big (}\nu +{\frac {m}{\alpha )){\big )))}{\frac {\Gamma {\big (}\nu +{\frac {m}{\alpha )){\big ))){\Gamma (\nu ))){\frac {\Gamma {\Big (}{\frac {1}{2\kappa ))+{\frac {\nu }{2)){\Big ))){\Gamma {\Big (}{\frac {1}{2\kappa ))-{\frac {\nu }{2)){\Big )))}{\frac {\Gamma {\Big (}{\frac {1}{2\kappa ))-{\frac {\nu }{2))-{\frac {m}{2\alpha )){\Big ))){\Gamma {\Big (}{\frac {1}{2\kappa ))+{\frac {\nu }{2))+{\frac {m}{2\alpha )){\Big ))))$ The moment of order $m$ of the κ-Gamma distribution is finite for $0<\nu +m/\alpha <1/\kappa$ .

The mode is given by:

$x_{\textrm {mode))=\beta ^{-1/\alpha }{\Bigg (}\nu -{\frac {1}{\alpha )){\Bigg )}^{\frac {1}{\alpha )){\Bigg [}1-\kappa ^{2}{\bigg (}\nu -{\frac {1}{\alpha )){\bigg )}^{2}{\Bigg ]}^{-{\frac {1}{2\alpha )))$ ### Asymptotic behavior

The κ-Gamma distribution behaves asymptotically as follows:

$\lim _{x\to +\infty }f_{\kappa }(x)\sim (2\kappa \beta )^{-1/\kappa }(1+\kappa \nu )(2\kappa )^{\nu }{\frac {\Gamma {\big (}{\frac {1}{2\kappa ))+{\frac {\nu }{2)){\big ))){\Gamma {\big (}{\frac {1}{2\kappa ))-{\frac {\nu }{2)){\big )))}{\frac {\alpha \beta ^{\nu )){\Gamma {\big (}\nu {\big )))}x^{\alpha \nu -1-\alpha /\kappa )$ $\lim _{x\to 0^{+))f_{\kappa }(x)=(1+\kappa \nu )(2\kappa )^{\nu }{\frac {\Gamma {\big (}{\frac {1}{2\kappa ))+{\frac {\nu }{2)){\big ))){\Gamma {\big (}{\frac {1}{2\kappa ))-{\frac {\nu }{2)){\big )))}{\frac {\alpha \beta ^{\nu )){\Gamma {\big (}\nu {\big )))}x^{\alpha \nu -1)$ ## Related distributions

• The κ-Gamma distributions is a generalization of:
• κ-Exponential distribution of type I, when $\alpha =\nu =1$ ;
• Kaniadakis κ-Erlang distribution, when $\alpha =1$ and $\nu =n=$ positive integer.
• κ-Half-Normal distribution, when $\alpha =2$ and $\nu =1/2$ ;
• A κ-Gamma distribution corresponds to several probability distributions when $\kappa =0$ , such as:
• Gamma distribution, when $\alpha =1$ ;
• Exponential distribution, when $\alpha =\nu =1$ ;
• Erlang distribution, when $\alpha =1$ and $\nu =n=$ positive integer;
• Chi-Squared distribution, when $\alpha =1$ and $\nu =$ half integer;
• Nakagami distribution, when $\alpha =2$ and $\nu >0$ ;
• Rayleigh distribution, when $\alpha =2$ and $\nu =1$ ;
• Chi distribution, when $\alpha =2$ and $\nu =$ half integer;
• Maxwell distribution, when $\alpha =2$ and $\nu =3/2$ ;
• Half-Normal distribution, when $\alpha =2$ and $\nu =1/2$ ;
• Weibull distribution, when $\alpha >0$ and $\nu =1$ ;
• Stretched Exponential distribution, when $\alpha >0$ and $\nu =1/\alpha$ ;