Parameters Probability density function Cumulative distribution function none ${\displaystyle x\in [0,1]}$ ${\displaystyle f(x)={\frac {1}{\pi {\sqrt {x(1-x)))))}$ ${\displaystyle F(x)={\frac {2}{\pi ))\arcsin \left({\sqrt {x))\right)}$ ${\displaystyle {\frac {1}{2))}$ ${\displaystyle {\frac {1}{2))}$ ${\displaystyle x\in \{0,1\))$ ${\displaystyle {\tfrac {1}{8))}$ ${\displaystyle 0}$ ${\displaystyle -{\tfrac {3}{2))}$ ${\displaystyle \ln {\tfrac {\pi }{4))}$ ${\displaystyle 1+\sum _{k=1}^{\infty }\left(\prod _{r=0}^{k-1}{\frac {2r+1}{2r+2))\right){\frac {t^{k)){k!))}$ ${\displaystyle e^{i{\frac {t}{2))}J_{0}({\frac {t}{2)))}$

In probability theory, the arcsine distribution is the probability distribution whose cumulative distribution function involves the arcsine and the square root:

${\displaystyle F(x)={\frac {2}{\pi ))\arcsin \left({\sqrt {x))\right)={\frac {\arcsin(2x-1)}{\pi ))+{\frac {1}{2))}$

for 0 ≤ x ≤ 1, and whose probability density function is

${\displaystyle f(x)={\frac {1}{\pi {\sqrt {x(1-x)))))}$

on (0, 1). The standard arcsine distribution is a special case of the beta distribution with α = β = 1/2. That is, if ${\displaystyle X}$ is an arcsine-distributed random variable, then ${\displaystyle X\sim {\rm {Beta)){\bigl (}{\tfrac {1}{2)),{\tfrac {1}{2)){\bigr )))$. By extension, the arcsine distribution is a special case of the Pearson type I distribution.

The arcsine distribution appears in the Lévy arcsine law, in the Erdős arcsine law, and as the Jeffreys prior for the probability of success of a Bernoulli trial.[1][2]

## Generalization

Parameters ${\displaystyle -\infty ${\displaystyle x\in [a,b]}$ ${\displaystyle f(x)={\frac {1}{\pi {\sqrt {(x-a)(b-x)))))}$ ${\displaystyle F(x)={\frac {2}{\pi ))\arcsin \left({\sqrt {\frac {x-a}{b-a))}\right)}$ ${\displaystyle {\frac {a+b}{2))}$ ${\displaystyle {\frac {a+b}{2))}$ ${\displaystyle x\in {a,b))$ ${\displaystyle {\tfrac {1}{8))(b-a)^{2))$ ${\displaystyle 0}$ ${\displaystyle -{\tfrac {3}{2))}$ ${\displaystyle e^{it{\frac {b+a}{2))}J_{0}({\frac {b-a}{2))t)}$

### Arbitrary bounded support

The distribution can be expanded to include any bounded support from a ≤ x ≤ b by a simple transformation

${\displaystyle F(x)={\frac {2}{\pi ))\arcsin \left({\sqrt {\frac {x-a}{b-a))}\right)}$

for a ≤ x ≤ b, and whose probability density function is

${\displaystyle f(x)={\frac {1}{\pi {\sqrt {(x-a)(b-x)))))}$

on (ab).

### Shape factor

The generalized standard arcsine distribution on (0,1) with probability density function

${\displaystyle f(x;\alpha )={\frac {\sin \pi \alpha }{\pi ))x^{-\alpha }(1-x)^{\alpha -1))$

is also a special case of the beta distribution with parameters ${\displaystyle {\rm {Beta))(1-\alpha ,\alpha )}$.

Note that when ${\displaystyle \alpha ={\tfrac {1}{2))}$ the general arcsine distribution reduces to the standard distribution listed above.

## Properties

• Arcsine distribution is closed under translation and scaling by a positive factor
• If ${\displaystyle X\sim {\rm {Arcsine))(a,b)\ {\text{then ))kX+c\sim {\rm {Arcsine))(ak+c,bk+c)}$
• The square of an arcsine distribution over (-1, 1) has arcsine distribution over (0, 1)
• If ${\displaystyle X\sim {\rm {Arcsine))(-1,1)\ {\text{then ))X^{2}\sim {\rm {Arcsine))(0,1)}$
• The coordinates of points uniformly selected on a circle of radius ${\displaystyle r}$ centered at the origin (0, 0), have an ${\displaystyle {\rm {Arcsine))(-r,r)}$ distribution
• For example, if we select a point uniformly on the circumference, ${\displaystyle U\sim {\rm {Uniform))(0,2\pi r)}$, we have that the point's x coordinate distribution is ${\displaystyle r\cdot \cos(U)\sim {\rm {Arcsine))(-r,r)}$, and its y coordinate distribution is ${\textstyle r\cdot \sin(U)\sim {\rm {Arcsine))(-r,r)}$

## Characteristic function

The characteristic function of the generalized arcsine distribution is a zero order Bessel function of the first kind, multiplied by a complex exponential, given by ${\displaystyle e^{it{\frac {b+a}{2))}J_{0}({\frac {b-a}{2))t)}$. For the special case of ${\displaystyle b=-a}$, the characteristic function takes the form of ${\displaystyle J_{0}(bt)}$.

## Related distributions

• If U and V are i.i.d uniform (−π,π) random variables, then ${\displaystyle \sin(U)}$, ${\displaystyle \sin(2U)}$, ${\displaystyle -\cos(2U)}$, ${\displaystyle \sin(U+V)}$ and ${\displaystyle \sin(U-V)}$ all have an ${\displaystyle {\rm {Arcsine))(-1,1)}$ distribution.
• If ${\displaystyle X}$ is the generalized arcsine distribution with shape parameter ${\displaystyle \alpha }$ supported on the finite interval [a,b] then ${\displaystyle {\frac {X-a}{b-a))\sim {\rm {Beta))(1-\alpha ,\alpha )\ }$
• If X ~ Cauchy(0, 1) then ${\displaystyle {\tfrac {1}{1+X^{2))))$ has a standard arcsine distribution

## References

1. ^ Overturf, Drew; et al. (2017). Investigation of beamforming patterns from volumetrically distributed phased arrays. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). pp. 817–822. doi:10.1109/MILCOM.2017.8170756. ISBN 978-1-5386-0595-0.
2. ^ Buchanan, K.; et al. (2020). "Null Beamsteering Using Distributed Arrays and Shared Aperture Distributions". IEEE Transactions on Antennas and Propagation. 68 (7): 5353–5364. doi:10.1109/TAP.2020.2978887.