Related distributions
Wigner (spherical) parabolic distribution
Wigner parabolic Parameters
R
>
0
{\displaystyle R>0\!}
radius (real ) Support
x
∈
[
−
R
;
+
R
]
{\displaystyle x\in [-R;+R]\!}
PDF
3
4
R
3
(
R
2
−
x
2
)
{\displaystyle {\frac {3}{4R^{3))}\,(R^{2}-x^{2})}
CDF
1
4
R
3
(
2
R
−
x
)
(
R
+
x
)
2
{\displaystyle {\frac {1}{4R^{3))}\,(2R-x)\,(R+x)^{2))
MGF
3
i
1
(
R
t
)
R
t
{\displaystyle 3\,{\frac {i_{1}(R\,t)}{R\,t))}
CF
3
j
1
(
R
t
)
R
t
{\displaystyle 3\,{\frac {j_{1}(R\,t)}{R\,t))}
The parabolic probability distribution [citation needed ] supported on the interval [−R , R ] of radius R centered at (0, 0):
f
(
x
)
=
3
4
R
3
(
R
2
−
x
2
)
{\displaystyle f(x)={3 \over \ 4R^{3)){(R^{2}-x^{2})}\,}
for −R ≤ x ≤ R , and f (x ) = 0 if |x| > R .
Example. The joint distribution is
∫
0
π
∫
0
+
2
π
∫
0
R
f
X
,
Y
,
Z
(
x
,
y
,
z
)
R
2
d
r
sin
(
θ
)
d
θ
d
ϕ
=
1
;
{\displaystyle \int _{0}^{\pi }\int _{0}^{+2\pi }\int _{0}^{R}f_{X,Y,Z}(x,y,z)R^{2}\,dr\sin(\theta )\,d\theta \,d\phi =1;}
f
X
,
Y
,
Z
(
x
,
y
,
z
)
=
3
4
π
{\displaystyle f_{X,Y,Z}(x,y,z)={\frac {3}{4\pi ))}
Hence, the marginal PDF of the spherical (parametric) distribution is:[4]
f
X
(
x
)
=
∫
−
1
−
y
2
−
x
2
+
1
−
y
2
−
x
2
∫
−
1
−
x
2
+
1
−
x
2
f
X
,
Y
,
Z
(
x
,
y
,
z
)
d
y
d
z
;
{\displaystyle f_{X}(x)=\int _{-{\sqrt {1-y^{2}-x^{2))))^{+{\sqrt {1-y^{2}-x^{2))))\int _{-{\sqrt {1-x^{2))))^{+{\sqrt {1-x^{2))))f_{X,Y,Z}(x,y,z)\,dy\,dz;}
f
X
(
x
)
=
∫
−
1
−
x
2
+
1
−
x
2
2
1
−
y
2
−
x
2
d
y
;
{\displaystyle f_{X}(x)=\int _{-{\sqrt {1-x^{2))))^{+{\sqrt {1-x^{2))))2{\sqrt {1-y^{2}-x^{2))}\,dy\,;}
f
X
(
x
)
=
3
4
(
1
−
x
2
)
;
{\displaystyle f_{X}(x)={3 \over \ 4}{(1-x^{2})}\,;}
such that R=1
The characteristic function of a spherical distribution becomes the pattern multiplication of the expected values of the distributions in X, Y and Z.
The parabolic Wigner distribution is also considered the monopole moment of the hydrogen like atomic orbitals.
Wigner n-sphere distribution
The normalized N-sphere probability density function supported on the interval [−1, 1] of radius 1 centered at (0, 0):
f
n
(
x
;
n
)
=
(
1
−
x
2
)
(
n
−
1
)
/
2
Γ
(
1
+
n
/
2
)
π
Γ
(
(
n
+
1
)
/
2
)
(
n
>=
−
1
)
{\displaystyle f_{n}(x;n)={(1-x^{2})^{(n-1)/2}\Gamma (1+n/2) \over {\sqrt {\pi ))\Gamma ((n+1)/2)}\,(n>=-1)}
,
for −1 ≤ x ≤ 1, and f (x ) = 0 if |x| > 1.
Example. The joint distribution is
∫
−
1
−
y
2
−
x
2
+
1
−
y
2
−
x
2
∫
−
1
−
x
2
+
1
−
x
2
∫
0
1
f
X
,
Y
,
Z
(
x
,
y
,
z
)
1
−
x
2
−
y
2
−
z
2
(
n
)
d
x
d
y
d
z
=
1
;
{\displaystyle \int _{-{\sqrt {1-y^{2}-x^{2))))^{+{\sqrt {1-y^{2}-x^{2))))\int _{-{\sqrt {1-x^{2))))^{+{\sqrt {1-x^{2))))\int _{0}^{1}f_{X,Y,Z}(x,y,z)((\sqrt {1-x^{2}-y^{2}-z^{2))}^{(n)))dxdydz=1;}
f
X
,
Y
,
Z
(
x
,
y
,
z
)
=
3
4
π
{\displaystyle f_{X,Y,Z}(x,y,z)={\frac {3}{4\pi ))}
Hence, the marginal PDF distribution is [4]
f
X
(
x
;
n
)
=
(
1
−
x
2
)
(
n
−
1
)
/
2
)
Γ
(
1
+
n
/
2
)
π
Γ
(
(
n
+
1
)
/
2
)
;
{\displaystyle f_{X}(x;n)={(1-x^{2})^{(n-1)/2)}\Gamma (1+n/2) \over \ {\sqrt {\pi ))\Gamma ((n+1)/2)}\,;}
such that R=1
The cumulative distribution function (CDF) is
F
X
(
x
)
=
2
x
Γ
(
1
+
n
/
2
)
2
F
1
(
1
/
2
,
(
1
−
n
)
/
2
;
3
/
2
;
x
2
)
π
Γ
(
(
n
+
1
)
/
2
)
;
{\displaystyle F_{X}(x)={2x\Gamma (1+n/2)_{2}F_{1}(1/2,(1-n)/2;3/2;x^{2}) \over \ {\sqrt {\pi ))\Gamma ((n+1)/2)}\,;}
such that R=1 and n >= -1
The characteristic function (CF) of the PDF is related to the beta distribution as shown below
C
F
(
t
;
n
)
=
1
F
1
(
n
/
2
,
;
n
;
j
t
/
2
)
⌝
(
α
=
β
=
n
/
2
)
;
{\displaystyle CF(t;n)={_{1}F_{1}(n/2,;n;jt/2)}\,\urcorner (\alpha =\beta =n/2);}
In terms of Bessel functions this is
C
F
(
t
;
n
)
=
Γ
(
n
/
2
+
1
)
J
n
/
2
(
t
)
/
(
t
/
2
)
(
n
/
2
)
⌝
(
n
>=
−
1
)
;
{\displaystyle CF(t;n)={\Gamma (n/2+1)J_{n/2}(t)/(t/2)^{(n/2)))\,\urcorner (n>=-1);}
Raw moments of the PDF are
μ
N
′
(
n
)
=
∫
−
1
+
1
x
N
f
X
(
x
;
n
)
d
x
=
(
1
+
(
−
1
)
N
)
Γ
(
1
+
n
/
2
)
2
π
Γ
(
(
2
+
n
+
N
)
/
2
)
;
{\displaystyle \mu '_{N}(n)=\int _{-1}^{+1}x^{N}f_{X}(x;n)dx={(1+(-1)^{N})\Gamma (1+n/2) \over \ {2{\sqrt {\pi ))}\Gamma ((2+n+N)/2)};}
Central moments are
μ
0
(
x
)
=
1
{\displaystyle \mu _{0}(x)=1}
μ
1
(
n
)
=
μ
1
′
(
n
)
{\displaystyle \mu _{1}(n)=\mu _{1}'(n)}
μ
2
(
n
)
=
μ
2
′
(
n
)
−
μ
1
′
2
(
n
)
{\displaystyle \mu _{2}(n)=\mu _{2}'(n)-\mu _{1}'^{2}(n)}
μ
3
(
n
)
=
2
μ
1
′
3
(
n
)
−
3
μ
1
′
(
n
)
μ
2
′
(
n
)
+
μ
3
′
(
n
)
{\displaystyle \mu _{3}(n)=2\mu _{1}'^{3}(n)-3\mu _{1}'(n)\mu _{2}'(n)+\mu _{3}'(n)}
μ
4
(
n
)
=
−
3
μ
1
′
4
(
n
)
+
6
μ
1
′
2
(
n
)
μ
2
′
(
n
)
−
4
μ
1
′
(
n
)
μ
3
′
(
n
)
+
μ
4
′
(
n
)
{\displaystyle \mu _{4}(n)=-3\mu _{1}'^{4}(n)+6\mu _{1}'^{2}(n)\mu _{2}'(n)-4\mu '_{1}(n)\mu '_{3}(n)+\mu '_{4}(n)}
The corresponding probability moments (mean, variance, skew, kurtosis and excess-kurtosis) are:
μ
(
x
)
=
μ
1
′
(
x
)
=
0
{\displaystyle \mu (x)=\mu _{1}'(x)=0}
σ
2
(
n
)
=
μ
2
′
(
n
)
−
μ
2
(
n
)
=
1
/
(
2
+
n
)
{\displaystyle \sigma ^{2}(n)=\mu _{2}'(n)-\mu ^{2}(n)=1/(2+n)}
γ
1
(
n
)
=
μ
3
/
μ
2
3
/
2
=
0
{\displaystyle \gamma _{1}(n)=\mu _{3}/\mu _{2}^{3/2}=0}
β
2
(
n
)
=
μ
4
/
μ
2
2
=
3
(
2
+
n
)
/
(
4
+
n
)
{\displaystyle \beta _{2}(n)=\mu _{4}/\mu _{2}^{2}=3(2+n)/(4+n)}
γ
2
(
n
)
=
μ
4
/
μ
2
2
−
3
=
−
6
/
(
4
+
n
)
{\displaystyle \gamma _{2}(n)=\mu _{4}/\mu _{2}^{2}-3=-6/(4+n)}
Raw moments of the characteristic function are:
μ
N
′
(
n
)
=
μ
N
;
E
′
(
n
)
+
μ
N
;
O
′
(
n
)
=
∫
−
1
+
1
c
o
s
N
(
x
t
)
f
X
(
x
;
n
)
d
x
+
∫
−
1
+
1
s
i
n
N
(
x
t
)
f
X
(
x
;
n
)
d
x
;
{\displaystyle \mu '_{N}(n)=\mu '_{N;E}(n)+\mu '_{N;O}(n)=\int _{-1}^{+1}cos^{N}(xt)f_{X}(x;n)dx+\int _{-1}^{+1}sin^{N}(xt)f_{X}(x;n)dx;}
For an even distribution the moments are [5]
μ
1
′
(
t
;
n
:
E
)
=
C
F
(
t
;
n
)
{\displaystyle \mu _{1}'(t;n:E)=CF(t;n)}
μ
1
′
(
t
;
n
:
O
)
=
0
{\displaystyle \mu _{1}'(t;n:O)=0}
μ
1
′
(
t
;
n
)
=
C
F
(
t
;
n
)
{\displaystyle \mu _{1}'(t;n)=CF(t;n)}
μ
2
′
(
t
;
n
:
E
)
=
1
/
2
(
1
+
C
F
(
2
t
;
n
)
)
{\displaystyle \mu _{2}'(t;n:E)=1/2(1+CF(2t;n))}
μ
2
′
(
t
;
n
:
O
)
=
1
/
2
(
1
−
C
F
(
2
t
;
n
)
)
{\displaystyle \mu _{2}'(t;n:O)=1/2(1-CF(2t;n))}
μ
2
′
(
t
;
n
)
=
1
{\displaystyle \mu '_{2}(t;n)=1}
μ
3
′
(
t
;
n
:
E
)
=
(
C
F
(
3
t
)
+
3
C
F
(
t
;
n
)
)
/
4
{\displaystyle \mu _{3}'(t;n:E)=(CF(3t)+3CF(t;n))/4}
μ
3
′
(
t
;
n
:
O
)
=
0
{\displaystyle \mu _{3}'(t;n:O)=0}
μ
3
′
(
t
;
n
)
=
(
C
F
(
3
t
;
n
)
+
3
C
F
(
t
;
n
)
)
/
4
{\displaystyle \mu _{3}'(t;n)=(CF(3t;n)+3CF(t;n))/4}
μ
4
′
(
t
;
n
:
E
)
=
(
3
+
4
C
F
(
2
t
;
n
)
+
C
F
(
4
t
;
n
)
)
/
8
{\displaystyle \mu _{4}'(t;n:E)=(3+4CF(2t;n)+CF(4t;n))/8}
μ
4
′
(
t
;
n
:
O
)
=
(
3
−
4
C
F
(
2
t
;
n
)
+
C
F
(
4
t
;
n
)
)
/
8
{\displaystyle \mu _{4}'(t;n:O)=(3-4CF(2t;n)+CF(4t;n))/8}
μ
4
′
(
t
;
n
)
=
(
3
+
C
F
(
4
t
;
n
)
)
/
4
{\displaystyle \mu _{4}'(t;n)=(3+CF(4t;n))/4}
Hence, the moments of the CF (provided N=1) are
μ
(
t
;
n
)
=
μ
1
′
(
t
)
=
C
F
(
t
;
n
)
=
0
F
1
(
2
+
n
2
,
−
t
2
4
)
{\displaystyle \mu (t;n)=\mu _{1}'(t)=CF(t;n)=_{0}F_{1}({2+n \over 2},-{t^{2} \over 4})}
σ
2
(
t
;
n
)
=
1
−
|
C
F
(
t
;
n
)
|
2
=
1
−
|
0
F
1
(
2
+
n
2
,
−
t
2
/
4
)
|
2
{\displaystyle \sigma ^{2}(t;n)=1-|CF(t;n)|^{2}=1-|_{0}F_{1}({2+n \over 2},-t^{2}/4)|^{2))
γ
1
(
n
)
=
μ
3
μ
2
3
/
2
=
0
F
1
(
2
+
n
2
,
−
9
t
2
4
)
−
0
F
1
(
2
+
n
2
,
−
t
2
4
)
+
8
|
0
F
1
(
2
+
n
2
,
−
t
2
4
)
|
3
4
(
1
−
|
0
F
1
(
2
+
n
2
,
−
t
2
4
)
)
2
|
(
3
/
2
)
{\displaystyle \gamma _{1}(n)={\mu _{3} \over \mu _{2}^{3/2))={_{0}F_{1}({2+n \over 2},-9{t^{2} \over 4})-_{0}F_{1}({2+n \over 2},-{t^{2} \over 4})+8|_{0}F_{1}({2+n \over 2},-{t^{2} \over 4})|^{3} \over 4(1-|_{0}F_{1}({2+n \over 2},-{t^{2} \over 4}))^{2}|^{(3/2)))}
β
2
(
n
)
=
μ
4
μ
2
2
=
3
+
0
F
1
(
2
+
n
2
,
−
4
t
2
)
−
(
4
0
F
1
(
2
+
n
2
,
−
t
2
4
)
(
0
F
1
(
2
+
n
2
,
−
9
t
2
4
)
)
+
3
0
F
1
(
2
+
n
2
,
−
t
2
4
)
(
−
1
+
|
0
F
1
(
2
+
n
2
,
−
t
2
4
|
2
)
)
4
(
−
1
+
|
0
F
1
(
2
+
n
2
,
−
t
2
4
)
)
2
|
2
{\displaystyle \beta _{2}(n)={\mu _{4} \over \mu _{2}^{2))={3+_{0}F_{1}({2+n \over 2},-4t^{2})-(4_{0}F_{1}({2+n \over 2},-{t^{2} \over 4})(_{0}F_{1}({2+n \over 2},-9{t^{2} \over 4}))+3_{0}F_{1}({2+n \over 2},-{t^{2} \over 4})(-1+|_{0}F_{1}({2+n \over 2},-{t^{2} \over 4}|^{2})) \over 4(-1+|_{0}F_{1}({2+n \over 2},-{t^{2} \over 4}))^{2}|^{2))}
γ
2
(
n
)
=
μ
4
/
μ
2
2
−
3
=
−
9
+
0
F
1
(
2
+
n
2
,
−
4
t
2
)
−
(
4
0
F
1
(
2
+
n
2
,
−
t
2
/
4
)
(
0
F
1
(
2
+
n
2
,
−
9
t
2
4
)
)
−
9
0
F
1
(
2
+
n
2
,
−
t
2
4
)
+
6
|
0
F
1
(
2
+
n
2
,
−
t
2
4
|
3
)
4
(
−
1
+
|
0
F
1
(
2
+
n
2
,
−
t
2
4
)
)
2
|
2
{\displaystyle \gamma _{2}(n)=\mu _{4}/\mu _{2}^{2}-3={-9+_{0}F_{1}({2+n \over 2},-4t^{2})-(4_{0}F_{1}({2+n \over 2},-t^{2}/4)(_{0}F_{1}({2+n \over 2},-9{t^{2} \over 4}))-9_{0}F_{1}({2+n \over 2},-{t^{2} \over 4})+6|_{0}F_{1}({2+n \over 2},-{t^{2} \over 4}|^{3}) \over 4(-1+|_{0}F_{1}({2+n \over 2},-{t^{2} \over 4}))^{2}|^{2))}
Skew and Kurtosis can also be simplified in terms of Bessel functions.
The entropy is calculated as
H
N
(
n
)
=
∫
−
1
+
1
f
X
(
x
;
n
)
ln
(
f
X
(
x
;
n
)
)
d
x
{\displaystyle H_{N}(n)=\int _{-1}^{+1}f_{X}(x;n)\ln(f_{X}(x;n))dx}
The first 5 moments (n=-1 to 3), such that R=1 are
−
ln
(
2
/
π
)
;
n
=
−
1
{\displaystyle \ -\ln(2/\pi );n=-1}
−
ln
(
2
)
;
n
=
0
{\displaystyle \ -\ln(2);n=0}
−
1
/
2
+
ln
(
π
)
;
n
=
1
{\displaystyle \ -1/2+\ln(\pi );n=1}
5
/
3
−
ln
(
3
)
;
n
=
2
{\displaystyle \ 5/3-\ln(3);n=2}
−
7
/
4
−
ln
(
1
/
3
π
)
;
n
=
3
{\displaystyle \ -7/4-\ln(1/3\pi );n=3}
N-sphere Wigner distribution with odd symmetry applied
The marginal PDF distribution with odd symmetry is [4]
f
X
(
x
;
n
)
=
(
1
−
x
2
)
(
n
−
1
)
/
2
)
Γ
(
1
+
n
/
2
)
π
Γ
(
(
n
+
1
)
/
2
)
sgn
(
x
)
;
{\displaystyle f{_{X))(x;n)={(1-x^{2})^{(n-1)/2)}\Gamma (1+n/2) \over \ {\sqrt {\pi ))\Gamma ((n+1)/2)}\operatorname {sgn}(x)\,;}
such that R=1
Hence, the CF is expressed in terms of Struve functions
C
F
(
t
;
n
)
=
Γ
(
n
/
2
+
1
)
H
n
/
2
(
t
)
/
(
t
/
2
)
(
n
/
2
)
⌝
(
n
>=
−
1
)
;
{\displaystyle CF(t;n)={\Gamma (n/2+1)H_{n/2}(t)/(t/2)^{(n/2)))\,\urcorner (n>=-1);}
"The Struve function arises in the problem of the rigid-piston radiator mounted in an infinite baffle, which has radiation impedance given by" [6]
Z
=
ρ
c
π
a
2
[
R
1
(
2
k
a
)
−
i
X
1
(
2
k
a
)
]
,
{\displaystyle Z={\rho c\pi a^{2}[R_{1}(2ka)-iX_{1}(2ka)],))
R
1
=
1
−
2
J
1
(
x
)
2
x
,
{\displaystyle R_{1}={1-{2J_{1}(x) \over 2x},))
X
1
=
2
H
1
(
x
)
x
,
{\displaystyle X_{1}=((2H_{1}(x) \over x},))
Example (Normalized Received Signal Strength): quadrature terms
The normalized received signal strength is defined as
|
R
|
=
1
N
|
∑
k
=
1
N
exp
[
i
x
n
t
]
|
{\displaystyle |R|=((1 \over N}|}\sum _{k=1}^{N}\exp[ix_{n}t]|}
and using standard quadrature terms
x
=
1
N
∑
k
=
1
N
cos
(
x
n
t
)
{\displaystyle x={1 \over N}\sum _{k=1}^{N}\cos(x_{n}t)}
y
=
1
N
∑
k
=
1
N
sin
(
x
n
t
)
{\displaystyle y={1 \over N}\sum _{k=1}^{N}\sin(x_{n}t)}
Hence, for an even distribution we expand the NRSS, such that x = 1 and y = 0, obtaining
x
2
+
y
2
=
x
+
3
2
y
2
−
3
2
x
y
2
+
1
2
x
2
y
2
+
O
(
y
3
)
+
O
(
y
3
)
(
x
−
1
)
+
O
(
y
3
)
(
x
−
1
)
2
+
O
(
x
−
1
)
3
{\displaystyle {\sqrt {x^{2}+y^{2))}=x+{3 \over 2}y^{2}-{3 \over 2}xy^{2}+{1 \over 2}x^{2}y^{2}+O(y^{3})+O(y^{3})(x-1)+O(y^{3})(x-1)^{2}+O(x-1)^{3))
The expanded form of the Characteristic function of the received signal strength becomes [7]
E
[
x
]
=
1
N
C
F
(
t
;
n
)
{\displaystyle E[x]={1 \over N}CF(t;n)}
E
[
y
2
]
=
1
2
N
(
1
−
C
F
(
2
t
;
n
)
)
{\displaystyle E[y^{2}]={1 \over 2N}(1-CF(2t;n))}
E
[
x
2
]
=
1
2
N
(
1
+
C
F
(
2
t
;
n
)
)
{\displaystyle E[x^{2}]={1 \over 2N}(1+CF(2t;n))}
E
[
x
y
2
]
=
t
2
3
N
2
C
F
(
t
;
n
)
3
+
(
N
−
1
2
N
2
)
(
1
−
t
C
F
(
2
t
;
n
)
)
C
F
(
t
;
n
)
{\displaystyle E[xy^{2}]={t^{2} \over 3N^{2))CF(t;n)^{3}+({N-1 \over 2N^{2)))(1-tCF(2t;n))CF(t;n)}
E
[
x
2
y
2
]
=
1
8
N
3
(
1
−
C
F
(
4
t
;
n
)
)
+
(
N
−
1
4
N
3
)
(
1
−
C
F
(
2
t
;
n
)
2
)
+
(
N
−
1
3
N
3
)
t
2
C
F
(
t
;
n
)
4
+
(
(
N
−
1
)
(
N
−
2
)
N
3
)
C
F
(
t
;
n
)
2
(
1
−
C
F
(
2
t
;
n
)
)
{\displaystyle E[x^{2}y^{2}]={1 \over 8N^{3))(1-CF(4t;n))+({N-1 \over 4N^{3)))(1-CF(2t;n)^{2})+({N-1 \over 3N^{3)))t^{2}CF(t;n)^{4}+({(N-1)(N-2) \over N^{3)))CF(t;n)^{2}(1-CF(2t;n))}