Probability distribution
In the 2D plane, pick a fixed point at distance
ν from the origin. Generate a distribution of 2D points centered around that point, where the
x and
y coordinates are chosen independently from a
Gaussian distribution with standard deviation
σ (blue region). If
R is the distance from these points to the origin, then
R has a Rice distribution.
In probability theory, the Rice distribution or Rician distribution (or, less commonly, Ricean distribution) is the probability distribution of the magnitude of a circularly-symmetric bivariate normal random variable, possibly with non-zero mean (noncentral). It was named after Stephen O. Rice (1907–1986).
Characterization
The probability density function is

where I0(z) is the modified Bessel function of the first kind with order zero.
In the context of Rician fading, the distribution is often also rewritten using the Shape Parameter
, defined as the ratio of the power contributions by line-of-sight path to the remaining multipaths, and the Scale parameter
, defined as the total power received in all paths.[1]
The characteristic function of the Rice distribution is given as:[2][3]
![{\displaystyle {\begin{aligned}\chi _{X}(t\mid \nu ,\sigma )=\exp \left(-{\frac {\nu ^{2)){2\sigma ^{2))}\right)&\left[\Psi _{2}\left(1;1,{\frac {1}{2));{\frac {\nu ^{2)){2\sigma ^{2))},-{\frac {1}{2))\sigma ^{2}t^{2}\right)\right.\\[8pt]&\left.{}+i{\sqrt {2))\sigma t\Psi _{2}\left({\frac {3}{2));1,{\frac {3}{2));{\frac {\nu ^{2)){2\sigma ^{2))},-{\frac {1}{2))\sigma ^{2}t^{2}\right)\right],\end{aligned))}](https://wikimedia.org/api/rest_v1/media/math/render/svg/78e23ca2a48dd2b11c2e5ca46a8f017950308c55)
where
is one of Horn's confluent hypergeometric functions with two variables and convergent for all finite values of
and
. It is given by:[4][5]

where

is the rising factorial.
Properties
Moments
The first few raw moments are:

and, in general, the raw moments are given by

Here Lq(x) denotes a Laguerre polynomial:

where
is the confluent hypergeometric function of the first kind. When k is even, the raw moments become simple polynomials in σ and ν, as in the examples above.
For the case q = 1/2:
![{\displaystyle {\begin{aligned}L_{1/2}(x)&=\,_{1}F_{1}\left(-{\frac {1}{2));1;x\right)\\&=e^{x/2}\left[\left(1-x\right)I_{0}\left(-{\frac {x}{2))\right)-xI_{1}\left(-{\frac {x}{2))\right)\right].\end{aligned))}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7baebb5240ced1a2464e31b42c0a0513eb18f296)
The second central moment, the variance, is

Note that
indicates the square of the Laguerre polynomial
, not the generalized Laguerre polynomial
Limiting cases
For large values of the argument, the Laguerre polynomial becomes[8]

It is seen that as ν becomes large or σ becomes small the mean becomes ν and the variance becomes σ2.
The transition to a Gaussian approximation proceeds as follows. From Bessel function theory we have

so, in the large
region, an asymptotic expansion of the Rician distribution:

Moreover, when the density is concentrated around
and
because of the Gaussian exponent, we can also write
and finally get the Normal approximation

The approximation becomes usable for
Parameter estimation (the Koay inversion technique)
There are three different methods for estimating the parameters of the Rice distribution, (1) method of moments,[9][10][11][12] (2) method of maximum likelihood,[9][10][11][13] and (3) method of least squares.[citation needed] In the first two methods the interest is in estimating the parameters of the distribution, ν and σ, from a sample of data. This can be done using the method of moments, e.g., the sample mean and the sample standard deviation. The sample mean is an estimate of μ1' and the sample standard deviation is an estimate of μ21/2.
The following is an efficient method, known as the "Koay inversion technique".[14] for solving the estimating equations, based on the sample mean and the sample standard deviation, simultaneously . This inversion technique is also known as the fixed point formula of SNR. Earlier works[9][15] on the method of moments usually use a root-finding method to solve the problem, which is not efficient.
First, the ratio of the sample mean to the sample standard deviation is defined as r, i.e.,
. The fixed point formula of SNR is expressed as
![g(\theta )={\sqrt {\xi {(\theta )}\left[1+r^{2}\right]-2)),](https://wikimedia.org/api/rest_v1/media/math/render/svg/3475731daba192c855cd90f039f3a56a2bc26321)
where
is the ratio of the parameters, i.e.,
, and
is given by:
![\xi {\left(\theta \right)}=2+\theta ^{2}-{\frac {\pi }{8))\exp {(-\theta ^{2}/2)}\left[(2+\theta ^{2})I_{0}(\theta ^{2}/4)+\theta ^{2}I_{1}(\theta ^((2))/4)\right]^{2},](https://wikimedia.org/api/rest_v1/media/math/render/svg/2c016f1732f8a5a3bc72b406e9c40d7023f1f621)
where
and
are modified Bessel functions of the first kind.
Note that
is a scaling factor of
and is related to
by:

To find the fixed point,
, of
, an initial solution is selected,
, that is greater than the lower bound, which is
and occurs when
[14] (Notice that this is the
of a Rayleigh distribution). This provides a starting point for the iteration, which uses functional composition,[clarification needed] and this continues until
is less than some small positive value. Here,
denotes the composition of the same function,
,
times. In practice, we associate the final
for some integer
as the fixed point,
, i.e.,
.
Once the fixed point is found, the estimates
and
are found through the scaling function,
, as follows:

and

To speed up the iteration even more, one can use the Newton's method of root-finding.[14] This particular approach is highly efficient.