Plongée sous glace VJ.JPG
Ice Diving - View from the top
Ice Diving - View from the top
Under the ice - view from below
Under the ice - view from below
Monitoring an ice diver conducting studies below the ice.
Monitoring an ice diver conducting studies below the ice.
Cutting a hole in the ice to check the water conditions
Cutting a hole in the ice to check the water conditions
Checking water conditions through a small hole in the ice
Checking water conditions through a small hole in the ice
Cutting the ice hole with chainsaws
Cutting the ice hole with chainsaws

Ice diving is a type of penetration diving where the dive takes place under ice.[1][2] Because diving under ice places the diver in an overhead environment typically with only a single entry/exit point, it requires special procedures and equipment. Ice diving is done for purposes of recreation, scientific research, public safety (usually search and rescue/recovery) and other professional or commercial reasons.[3]

The most obvious hazards of ice diving are getting lost under the ice, hypothermia, and regulator failure due to freezing. Scuba divers are generally tethered for safety. This means that the diver wears a harness to which a line is secured, and the other end of the line is secured above the surface and monitored by an attendant. Surface supplied equipment inherently provides a tether, and reduces the risks of regulator first stage freezing as the first stage can be managed by the surface team, and the breathing gas supply is less limited. For the surface support team, the hazards include freezing temperatures and falling through thin ice.

Procedures

A team of 4 persons. The minimum personnel for ice diving. 1. Team currently diving  (1A. lead diver at line end; 1B. second diver and line handler; 1C. tender; 1D. first lifeline for communication, orientation and rescue, ~50-100 m) 2. Rescue diver (2A. fully equipped standby-diver, 2D. second lifeline)  3. Ice cover  4. Ice screws to secure the line ends. 5. Access opening in the ice cover.
A team of 4 persons. The minimum personnel for ice diving.
1. Team currently diving (1A. lead diver at line end; 1B. second diver and line handler; 1C. tender; 1D. first lifeline for communication, orientation and rescue, ~50-100 m)
2. Rescue diver (2A. fully equipped standby-diver, 2D. second lifeline)
3. Ice cover
4. Ice screws to secure the line ends.
5. Access opening in the ice cover.
A team of 6 persons. More secure than a team of 4. 1. Team currently diving (1A. lead diver at line end; 1B. second diver and line handler; 1C. tender; 1D. first lifeline for communication, orientation and rescue, ~50-100m) 2. Rescue team (2A. fully equipped standby-diver; 2B. fully equipped line handler for the standby-diver; 2C. standby-tender; 2D. second lifeline)  3. Ice cover  4. Ice screws to anchor the line ends. 5. Access opening in the ice cover.
A team of 6 persons. More secure than a team of 4.
1. Team currently diving (1A. lead diver at line end; 1B. second diver and line handler; 1C. tender; 1D. first lifeline for communication, orientation and rescue, ~50-100m)
2. Rescue team (2A. fully equipped standby-diver; 2B. fully equipped line handler for the standby-diver; 2C. standby-tender; 2D. second lifeline)
3. Ice cover
4. Ice screws to anchor the line ends.
5. Access opening in the ice cover.
Site prepared for diving under ice 1. Snowy surface. 2. Radial lines from the hole cleared of snow for navigation aids under the ice. 3. Work area cleared of snow. 4. Triangular entry opening cut in the ice. 5. First lifeline, prepared to support the divers. 6. Second lifeline, prepared to support the standby team. 7. Ice screws to anchor the rope ends.
Site prepared for diving under ice
1. Snowy surface.
2. Radial lines from the hole cleared of snow for navigation aids under the ice.
3. Work area cleared of snow.
4. Triangular entry opening cut in the ice.
5. First lifeline, prepared to support the divers.
6. Second lifeline, prepared to support the standby team.
7. Ice screws to anchor the rope ends.

Whether ice diving inherently constitutes technical diving is debated within the recreational diving community. For the professional diver it is a high risk environment requiring additional safety measures.

Ice diving is a team diving activity because each diver's lifeline requires a line tender. This person is responsible for paying out and taking in line so that the diver does not get tangled, and for rope signal communications with the diver. Professional teams will also require a stand-by diver and diving supervisor.[4]

Under some circumstances a guide line can be used instead of a lifeline as a reference for the divers to return to the hole at the end of the dive or in an emergency in a similar way to cave diving or wreck penetration. In these cases the divers should be competent in procedures for diving with a guideline.[3]

Polar diving experience has shown that buoyancy control is a critical skill affecting safety.[2][clarification needed]

Typical procedure for a scuba dive under ice:[2][5]

Equipment

Since diving under the ice takes place in cold climates, there is typically a large amount of equipment required. Besides each person's clothing and exposure-protection requirements, including spare mitts and socks, there is basic scuba gear, back-up scuba gear, tools to cut a hole in the ice, snow removal tools, safety gear, some type of shelter, lines, and refreshments required.[3]

The diver can use a weight harness, integrated weight buoyancy control device, or a weight belt with two buckles on it so the weights can not be accidentally released which would cause a run-away ascent into the ice sheet.[citation needed]

Dry suits with adequate thermal undergarments are standard environmental protection for ice diving, though in some cases thick wetsuits may suffice. Hoods, boots and gloves are also worn. Full-face masks can provide more protection for the divers' facial skin.

Exposure suits

Because of the water temperature (between 4 °C and 0 °C in fresh water, approximately -1.9 °C for normal salinity sea water), exposure suits are mandatory.[6]

Some consider a dry suit mandatory; however, a thick wetsuit may be sufficient for hardier divers. A wetsuit can be pre-heated by pouring warm water into the suit. A hood and gloves (recommended three-finger mitts or dry gloves with rings) are necessary, and dry suit divers have the option of using hoods and gloves that keep their head and hands dry. Some prefer to use a full face diving mask to essentially eliminate any contact with the cold water.[citation needed] The biggest drawback to using a wet suit is the chilling effect on the diver caused by the water evaporating from the suit after a dive.[citation needed] This can be reduced by using a heated shelter.

Scuba equipment

A diving regulator suitable for cold-water is used. All regulators have a risk of freezing and free flowing, but some models fare better than others.[7] Environmentally sealed regulators avoid contact between the surrounding water and the moving parts of the first stage by isolating them in an antifreeze fluid (e.g. Poseidon)[1] or by siting the moving parts behind a diaphragm and transmitting the pressure through a pushrod (e.g. Apeks).

Although there is no universally accepted standard, at least one agency[8] recommends the use of two non-freezing regulators arranged as follows: primary first stage with primary second stage, BCD inflation hose, and submersible pressure gauge (SPG); secondary first stage with secondary second stage (octopus), dry suit inflation hose, and SPG, although only one SPG is needed for a single cylinder or manifolded twins.

The two first stages are mounted on independently closable valves, as a first stage freeze free-flow can only be stopped by shutting off the air supply from the cylinder until the valve has thawed out. The second regulator is there to supply the remaining gas when the first regulator is shut off. A second-stage isolation valve used in conjunction with a first-stage overpressure relief valve may be effective as a quick method to manage demand valve free-flow.[2]

Redundant systems usually typically comprise double cylinders with a primary and alternate regulator. Each of the second stages is supplied its own first stage, which can be shut down at the cylinder valve in an emergency, such as a free flow. The diver's buoyancy compensator is on a different first stage to the dry suit so if there is an issue with one the diver can still control their buoyancy.

Some divers use a primary regulator on a 7-foot hose and a secondary on a necklace, this is useful when it may be necessary for the divers to swim in single file. the reason for the primary being on a long hose is to ensure the donated regulator is known to be working.[8]

Buoyancy and weighting

Tethers and guidelines

When diving under ice it can be easy to become disoriented, and a guideline back to the entry and exit hole is an important safety feature. The choice between using a tether (lifeline) controlled by a surface tender or a reel line deployed by the diver under ice depends on various factors.[3]

A tether connected to the diver and controlled by a surface tender is usually the safest option for most diving under ice, and the only reasonable choice when any significant current is present. The tether will prevent the diver from being swept away by current, and is generally strong enough for the surface party to pull the diver back to the hole unless it gets snagged. It may be the only option permitted by regulation or code of practice for professional divers on scuba. Recreational divers are not constrained by law or codes of practice, and there are a number of situations where experienced ice divers may choose to use a continuous guideline that is not attached to them, and which they control during the dive. This practice is more favoured for long penetration distances where entanglement and line fouling become greater risks. It is not recommended for divers new to the ice environment or for conditions which do not include very good visibility, no current, no moving ice and places to tie off the guideline along the route.[3] A guideline may have advantages over a tether if:[3]

Or:

Divers may also choose to use a guideline for the primary part of the dive and clip on to a tether for decompression as currents are usually strongest near the surface.[3]

Surface team

  • Warm waterproof shoes.
  • Warm anorak for cold weather.
  • Warm cap covering the ears.
  • Sunglasses with a UV filter to protect the eyes in sunny days.
  • Lip-care stick and cream to protect hands and face against cold and wind.
  • A device like crampons to aid in traction on ice. especially when cutting the hole or carrying gear

Hazards

Hazards of ice diving include the specific diving environmental hazards of penetration diving, in particular the hazard of not finding the exit area, and some hazards that are more specific to the low temperatures.[3]

Regulator freezing

See also: Mechanism of diving regulators § Regulator freezing

Regulator freezing is a malfunction of a diving regulator where ice formation on or in one or both stages causes the regulator to function incorrectly. Several types of malfunction are possible, including jamming of the first or second stage valves in any position from closed to more frequently fully open, which can produce a free-flow capable of emptying the diving cylinder in minutes, ice formation in the exhaust valve opening causing leakage of water into the mouthpiece, and shedding of ice shards into the inhalation air, which may be inhaled by the diver, possibly causing laryngospasm.[11]

When air expands during pressure reduction in a regulator, the temperature drops and heat is absorbed from the surroundings.[12] It is well known that in waters colder than 10 °C (50 °F) use of a regulator to inflate a lift bag, or to purge a regulator underwater for just a few seconds, will start many regulators free-flowing and they will not stop until the air supply to the regulator is stopped. Some cold water scuba divers install shuttle type shut off valves at each second stage regulator so if the second stage freezes open, the low pressure air can be shut off to the frozen second stage allowing them to switch to the alternative second stage and abort the dive.[11]

The most familiar effect of regulator freezing is where the second stage demand valve starts free flowing due to ice formation around the inlet valve mechanism that prevents the valve from closing after inhalation. Besides the problem of free flow from second stage icing, a less known problem is free ice formation, where ice forms and builds up inside the second stage but does not cause the regulator to free flow, and the diver may not be aware that the ice is there. This free ice build-up inside the second stage can break loose in the form of a sliver or chunk and pose a significant choking hazard because the ice can be inhaled, which may trigger laryngospasm. This can be a particular problem with regulators having ice-shedding internal surfaces that are teflon coated, which allows the ice to break free of the internal surfaces and helps to prevent the regulator from free flowing by clearing the ice. This may be helpful in keeping the demand valve mechanism free to move, but the ice still forms in the regulator and has to go somewhere when it breaks loose.[11]

With most second stage scuba regulators, ice forms and builds up on internal components, and the gap between the valve lever and fulcrum point is reduced and eventually filled by the build-up of ice that forms, preventing the inlet from fully closing during exhalation Once the valve starts leaking, the second stage components get even colder due to the cooling effect of the continuous flow, creating more ice and an even greater free flow. With some regulators the refrigerating effect is so great, that water around the exhaust valve freezes, reducing exhaust flow, and increasing exhalation effort and producing positive pressure in the valve body, making it difficult to exhale through the regulator. This may cause the diver to loosen their grip on the mouthpiece and exhale around the mouthpiece.[11]

With some regulators, once the regulator starts free-flowing the flow escalates into a full free-flow, and delivers air to the diver at temperatures cold enough to freeze mouth tissue in a short time, causing frostbite. The effect increases with depth, and the deeper the diver is, the faster the breathing gas will be lost. In some cold water fatalities, by the time the diver’s body is recovered there is no gas left in the cylinder, and the regulator has warmed up and melted the ice, destroying the evidence, and leading to a finding of death by drowning due to running out of gas.[11]

Mechanism of icing

When the high pressure gas passes through the regulator first stage, the pressure drop from cylinder pressure to inter-stage pressure causes a temperature drop as the gas expands. The higher the cylinder pressure the greater the drop in pressure and the colder the gas gets in the low pressure hose to the second stage. An increase in flow will increase the amount of heat lost and the gas will get colder, as heat transfer from the surrounding water is limited. If the breathing rate is low to moderate (15 to 30 lpm) the risk of ice formation is less.[11]

The factors that influence ice formation are:[11]

Once the water temperature drops below 3.3 °C (37.9 °F) there is not enough heat in the water to rewarm the components of the second stage being chilled by the cold gas from the first stage, and most second stages start forming ice.[11]

The cold inter-stage air enters the second stage and is reduced to ambient pressure, which cools it further, so it chills the second stage inlet valve components to well below freezing and as the diver exhales, the moisture in the exhaled breath condenses on the cold components and freezes. Heat from the surrounding water may keep the second stage regulator components warm enough to prevent the build-up of ice. The diver’s exhaled breath at 29 to 32 °C (84 to 90 °F), does not have enough heat to compensate for the cooling effect of the expanding incoming air once the water temperature is much below 4 °C (39 °F), and once the water temperature drops below 4 °C (39 °F) there is not enough heat in the water to rewarm the regulator components fast enough to keep moisture in the divers exhaled breath from freezing if the diver is breathing hard. This is why the CE cold water limit is at 4 °C (39 °F) which is the point at which many scuba regulators start retaining free ice.[11]

The longer the gas expands at a high rate, the more cold gas is produced, and for a given rate of reheating, the colder the regulator components will get. Keeping high flow rates to as short a time as possible will minimise ice formation.[11]

The air temperature above the ice may be considerably colder than the water under the ice, and the specific heat of air is much less than that of water. As a consequence, there is less warming of the regulator body and inter-stage gas when out of the water, and it is possible for further cooling to occur. This increases the risk of second stage icing, and the gas in the cylinder may be cooled sufficiently for condensation of residual moisture to occur during first stage expansion, as the expanding gas may cool below the −50 °C (−58 °F) dew point specified for high pressure breathing gas, which could cause internal icing of the first stage. This can be avoided by restricting breathing from the set in the cold air to a minimum.[3]

A similar effect occurs with the second stage. Air which has already expanded and cooled through the first stage expands again and cools further at the demand valve of the second stage. This cools the components of the second stage and water in contact with them may freeze. Metal components around the moving parts of the valve mechanism allow heat transfer from the surrounding slightly warmer water, and from exhaled air from the diver, which is considerably warmer than the surroundings.[7]

Second stage freezing can develop quickly from the moisture in the exhaled breath, so regulators that prevent or reduce contact of the diver’s exhaled breath with the colder components and the area where the cold gas enters will usually build up less ice on critical components. The heat transfer qualities of the materials can also significantly influence ice formation and freezing risk. Regulators with exhaust valves that do not seal well will form ice quickly as ambient water leaks into the casing. All second stages can develop ice when the inlet gas temperature averages below −4 °C (25 °F) and this can happen in water temperatures up to 10 °C (50 °F). The ice that forms may or may not cause a free flow, but any ice inside the regulator casing may present an inhalation hazard.[11]

A second stage freeze is also likely to happen with the valve open, causing a free flow, which may precipitate a first stage freeze if not immediately stopped. If the flow through the frozen second stage can be stopped before the first stage freezes, the process can be halted. This may be possible if the second stage is fitted with a shutoff valve, but if this is done, the first stage must be fitted with an over-pressure valve, as closing the supply to the second stage disables its secondary function as an over-pressure valve.[7]

Cold water function testing is used to compare a regulator's performance in cold water against various standards, mainly the U.S. Navy Experimental Diving Unit's unmanned cold water test procedures (1994), and European CE open circuit standard EN 250 of 1993. Testing may include failure modes and effects analysis, and other issues relating to manufacturing, quality assurance and documentation.[11] The introduction of a complete computerised breathing simulator system by ANSTI Test Systems Ltd in the UK made possible the accurate breathing simulator testing at all realistic water temperatures that is the current practice.[11]

Surface supplied breathing equipment

In most cases surface supplied helmets and full face mask demand valves do not get cold enough to develop ice because the umbilical works as a heat exchanger and warms the air up to the water temperature.[11] If the surface supplied diver bails out to scuba emergency gas supply, then the problems are identical to those for scuba, though the metal gas block and bent tube gas passages before the second stage will provide some warming of inter-stage gas beyond what a scuba set would normally provide.

If the surface air temperatures are well below freezing, (below −4 °C (25 °F)) excessive moisture from the volume tank can freeze into ice granules which can then travel down the umbilical and end up in the helmet intake, blocking off air to the demand valve, either as a reduction in flow or a complete blockage if the granules accumulate and form a plug. Ice formation in a surface supplied system can be prevented by use of an effective moisture separation system and regular draining of condensate. Desiccating filters can also be used. Use of HP gas for surface supply is not generally a problem as the HP compressors use a filter system that dries the air sufficiently to keep the dew point below −40 °C (−40 °F). Keeping the surface section of the umbilical exposed to the cold air as short as possible will also help. The portion in the water is not normally cold enough to be a problem.[11]

Factors increasing the risk of regulator freeze

Precautions to reduce risk of regulator freezing

Mitigation

Kirby Morgan have developed a stainless steel tube heat exchanger ("Thermo Exchanger") to warm the gas from the first stage regulator to reduce the risk of second stage scuba regulator freeze when diving in extremely cold water at temperatures down to −2.2 °C (28.0 °F).[11] The length and relatively good thermal conductivity of the tubing, and the thermal mass of the block allows sufficient heat from the water to warm the air to within one to two degrees of the surrounding water.[11]

Procedures for managing a regulator freeze

Protocol for a regulator freeze often includes aborting the dive.[13]

Low pressure inflator freeze

It is possible for the dry suit or buoyancy compensator inflation valve to freeze while inflating, for similar reasons to regulator freeze. If this happens it can cause a runaway ascent if it is not dealt with immediately. If possible the low pressure inflator hose should be disconnected before it freezes onto the valve, while dumping air to control buoyancy. Excessive dumping of air may leave the diver too negative so it is preferable to have at least two controllable buoyancy systems, such as a dry suit and BCD, preferably supplied from different first stages. If the dry suit inflation valve freezes open it may allow water to leak into the suit once disconnected, so this usually results in aborting the dive.

Most inflator problems can be avoided by keeping gear maintained and dry before the dive, using a low flow rate for inflation and avoiding long bursts, and having warm water at the dive site to thaw gear since ambient air temperature is usually well below freezing and this usually causes BCD issues before the dive.

Wind chill

See also: Wind chill

Temperatures above the ice may be considerably lower than water temperature, which is limited by freezing point of the water, and may be further exacerbated by wind chill. This can be a limiting factor on the endurance of the surface team if inadequately insulated and sheltered, and can have an impact on the divers on exiting the water in wet exposure suits.[2]: 117, 126 

This section needs expansion. You can help by adding to it. (April 2022)

Training and certification

Training includes learning about how ice forms, how to recognize unsafe ice conditions, dive site preparation, equipment requirements, and safety drills.

Other skills required by the ice diver include:[citation needed]

Several agencies offer certification in recreational ice diving.[14][15][16][17][18]

References

  1. ^ a b c Lang, M.A.; Stewart, J.R., eds. (1992). AAUS Polar Diving Workshop Proceedings (PDF). United States: Scripps Institution of Oceanography, La Jolla, CA. p. 100.
  2. ^ a b c d e f g h i j k l m n o p q r Lang, Michael A.; Sayer, M.D.J., eds. (2007). Consensus recommendations (PDF). Proceedings of the International Polar Diving Workshop, Svalbard. Washington, DC.: Smithsonian Institution. pp. 211–213.
  3. ^ a b c d e f g h i j k l m n o Smith, R. Todd; Dituri, Joseph (August 2008). "26: Expeditions ~ Arctic Ice Diving". In Mount, Tom; Dituri, Joseph (eds.). Exploration and Mixed Gas Diving Encyclopedia (1st ed.). Miami Shores, Florida: International Association of Nitrox Divers. pp. 297–304. ISBN 978-0-915539-10-9.
  4. ^ NOAA Diving Program (U.S.) (December 1979). Miller, James W. (ed.). NOAA Diving Manual, Diving for Science and Technology (2nd ed.). Silver Spring, Maryland: US Department of Commerce: National Oceanic and Atmospheric Administration, Office of Ocean Engineering.
  5. ^ a b Somers, Lee H. (1987). Lang, Michael A.; Mitchell, Charles T. (eds.). Training scientific divers for work in cold water and polar environments. 1987 AAUS - Cold Water Diving Workshop. Costa Mesa, California: American Academy of Underwater sciences. Retrieved 21 December 2016.
  6. ^ Lang, M.A.; Mitchell, C.T., eds. (1987). AAUS Proceedings of Special Session on Coldwater Diving (PDF). United States: University of Washington, Seattle, WA. p. 122.
  7. ^ a b c Clarke, John (2015). "Authorized for cold-water service: What Divers Should Know About Extreme Cold". ECO Magazine: 20–25. Retrieved 2015-03-07.
  8. ^ a b Jablonski, Jarrod (2006). Doing it Right: The Fundamentals of Better Diving. Global Underwater Explorers. p. 92. ISBN 0971326703. To provide additional redundancy when using two first stages, the inflator hose should always be run from the right post. This requirement is illustrated in the case of a diver’s left post rolling off or breaking. If the inflator is run from the left post, the diver will simultaneously lose not only the use of the backup regulator around the neck but also the ability to inflate the BC. These two problems together could be inordinately compounded by an out-of-air situation in which a diver would not only be without the means of controlling his/her buoyancy but would also be deprived of the use of a third regulator
  9. ^ Mueller, Peter H.J. (2007). Lang, Michael A.; Sayer, M.D.J. (eds.). Cold Stress and decompression sickness (PDF). Proceedings of the International Polar Diving Workshop, Svalbard. Washington, DC.: Smithsonian Institution. pp. 63–72.
  10. ^ Stinton, Robert T. (2007). Lang, Michael A.; Sayer, M.D.J. (eds.). A review of diver passive thermal protection strategies for polar diving: Present and future (PDF). Proceedings of the International Polar Diving Workshop, Svalbard. Washington, DC.: Smithsonian Institution. pp. 13–34.
  11. ^ a b c d e f g h i j k l m n o p q r Ward, Mike (9 April 2014). Scuba Regulator Freezing: Chilling Facts & Risks Associated with Cold Water Diving (Report). Panama Beach, Fl.: Dive Lab, Inc.
  12. ^ Salzman, WR. "Joule Expansion". Department of Chemistry, University of Arizona. Archived from the original on 2012-06-13. Retrieved 2012-05-27.
  13. ^ a b c d e f g h Somers, Lee H. (1987). Lang, Michael A.; Mitchell, Charles T. (eds.). The under ice dive. 1987 AAUS - Cold Water Diving Workshop. Costa Mesa, California: American Academy of Underwater sciences. Retrieved 21 December 2016.
  14. ^ "Specialty Course Ice Diver". www.padi.com. Retrieved 29 April 2020.
  15. ^ "Ice Diving". www.divessi.com. Retrieved 29 April 2020.
  16. ^ Ice Diving Standards Version 2009/01. CMAS. 2009.
  17. ^ "Ice Diving". www.bsac.com. Retrieved 29 April 2020.
  18. ^ "Overhead Environments: Technical Ice Diver". www.naui.org. Retrieved 29 April 2020.