← 4 5 6 →
−1 0 1 2 3 4 5 6 7 8 9
Cardinalfive
Ordinal5th
(fifth)
Numeral systemquinary
Factorizationprime
Prime3rd
Divisors1,5
Greek numeralΕ´
Roman numeralV, v
Greek prefixpenta-/pent-
Latin prefixquinque-/quinqu-/quint-
Binary1012
Ternary123
Senary56
Octal58
Duodecimal512
Hexadecimal516
Greekε (or Ε)
Arabic, Kurdish٥
Persian, Sindhi, Urdu۵
Ge'ez
Bengali
Kannada
Punjabi
Chinese numeral五,伍
Devanāgarī
Hebrewה
Khmer
Telugu
Malayalam
Tamil
Thai

5 (five) is a number, numeral and digit. It is the natural number, and cardinal number, following 4 and preceding 6, and is a prime number. It has attained significance throughout history in part because typical humans have five digits on each hand.

In mathematics

The first Pythagorean triple.
The first Pythagorean triple.

is the third smallest prime number, and the second super-prime.[1] It is the first safe prime, the first good prime, and the first of three known Wilson primes.[2] Five is the second Fermat prime[1] and the third Mersenne prime exponent,[3] as well as the third Catalan number,[4] and the third Sophie Germain prime.[1] Notably, 5 is equal to the sum of the only consecutive primes, 2 + 3, and is the only number that is part of more than one pair of twin primes, (3, 5) and (5, 7). It is also a sexy prime with the fifth prime number and first prime repunit, 11. Five is the third factorial prime, an alternating factorial,[5] and an Eisenstein prime with no imaginary part and real part of the form .[1] In particular, five is the first congruent number, since it is the length of the hypotenuse of the smallest integer-sided right triangle.[6]

Five is the second Fermat prime of the form + , and more generally the second Sierpiński number of the first kind, + .[7] There are a total of five known Fermat primes, which also include 3, 17, 257, and 65537.[8] The sum of the first 3 Fermat primes, 3, 5 and 17, yields 25 or 52, while 257 is the 55th prime number. Combinations from these 5 Fermat primes generate 31 polygons with an odd number of sides that can be construncted purely with a compass and straight-edge, which includes the five-sided regular pentagon. Apropos, 31 is also equal to the sum of the maximum number of areas inside a circle that are formed from the sides and diagonals of the first five -sided polygons, and equal to the maximum number of areas formed by a six-sided polygon; per Moser's circle problem.[9]

The number 5 is the fifth Fibonacci number, being 2 plus 3.[1] It is the only Fibonacci number that is equal to its position aside from 1, which is both the first and second Fibonacci numbers. Five is also a Pell number and a Markov number, appearing in solutions to the Markov Diophantine equation: (1, 2, 5), (1, 5, 13), (2, 5, 29), (5, 13, 194), (5, 29, 433), ... (OEISA030452 lists Markov numbers that appear in solutions where one of the other two terms is 5). Whereas 5 is unique in the Fibonacci sequence, in the Perrin sequence 5 is both the fifth and sixth Perrin numbers.[10]

5 is the third Mersenne prime exponent of the form , which yields : the prime index of the third Mersenne prime and second double Mersenne prime 127, as well as the third double Mersenne prime exponent for the number 2,147,483,647, which is the largest value that a signed 32-bit integer field can hold. There are only four known double Mersenne prime numbers, with a fifth candidate double Mersenne prime = 223058...93951 − 1 too large to compute with current computers. In a related sequence, the first 5 terms in the sequence of Catalan–Mersenne numbers are the only known prime terms, with a sixth possible candidate in the order of 101037.7094. These prime sequences are conjectured to be prime up to a certain limit.

Every odd number greater than is the sum of at most five prime numbers, and every odd number greater than can be expressed as the sum of three prime numbers.[11][12] The proof of the latter, also known as the odd Goldbach conjecture, is already widely acknowledged by mathematicians, even though it is still undergoing peer-review.

The sums of the first five non-primes greater than zero + + + + and the first five prime numbers + + + + both equal ; the 7th triangular number and like a perfect number, which also includes , the 31st triangular number and perfect number of the form −1() with a of , by the Euclid–Euler theorem.[13][14][15]

There are a total of five known unitary perfect numbers, which are numbers that are the sums of their positive proper unitary divisors. A sixth unitary number, if discovered, would have at least nine odd prime factors.[16]

Five is conjectured to be the only odd untouchable number, and if this is the case then five will be the only odd prime number that is not the base of an aliquot tree.[17]

In figurate numbers, 5 is a pentagonal number, with the sequence of pentagonal numbers starting: 1, 5, 12, 22, 35, ...[18]

The factorial of five, or ! = , is the sum of the first fifteen non-zero positive integers, and 15th triangular number, which in turn is the sum of the first five non-zero positive integers and 5th triangular number. 35, which is the fourth or fifth pentagonal and tetrahedral number, is equal to the sum of the first five triangular numbers: 1, 3, 6, 10, 15.[22]

5 is the value of the central cell of the only non-trivial normal magic square, also called the Lo Shu square. Its x array of squares has a magic constant of , where the sums of its rows, columns, and diagonals are all equal to fifteen.[23] 5 is also the value of the central cell the only non-trivial order-3 normal magic hexagon that is made of nineteen cells.[24]

Polynomial equations of degree 4 and below can be solved with radicals, while quintic equations of degree 5, and higher, cannot generally be so solved. This is the Abel–Ruffini theorem. This is related to the fact that the symmetric group is a solvable group for n ⩽ 4 and not solvable for n ⩾ 5.

Euler's identity, + = , contains five essential numbers used widely in mathematics: Archimedes' constant , Euler's number , the imaginary number , unity , and zero , which makes this formula a renown example of beauty in mathematics.

In geometry

Five Pointed Star Lined.svg

A pentagram, or five-pointed polygram, is the first proper star polygon constructed from the diagonals of a regular pentagon as self-intersecting edges that are proportioned in golden ratio, . Its internal geometry appears prominently in Penrose tilings, and is a facet inside Kepler-Poinsot star polyhedra and Schläfli–Hess star polychora, represented by its Schläfli symbol {5/2}. A similar figure to the pentagram is a five-pointed simple isotoxal star ☆ without self-intersecting edges. Generally, star polytopes that are regular only exist in dimensions 2 ⩽ < 5.

In graph theory, all graphs with 4 or fewer vertices are planar, however, there is a graph with 5 vertices that is not: K5, the complete graph with 5 vertices, where every pair of distinct vertices in a pentagon is joined by unique edges belonging to a pentagram. By Kuratowski's theorem, a finite graph is planar iff it does not contain a subgraph that is a subdivision of K5, or the complete bipartite utility graph K3,3.[25] A similar graph is the Petersen graph, which is strongly connected and also nonplanar. It is most easily described as graph of a pentagram embedded inside a pentagon, with a total of 5 crossings, a girth of 5, and a Thue number of 5.[26][27] The Petersen graph, which is also a distance-regular graph, is one of only 5 known connected vertex-transitive graphs with no Hamiltonian cycles.[28] The automorphism group of the Petersen graph is the symmetric group of order 120 = 5!.

The chromatic number of the plane is at least five, depending on the choice of set-theoretical axioms: the minimum number of colors required to color the plane such that no pair of points at a distance of 1 has the same color.[29] Whereas the hexagonal Golomb graph and the regular hexagonal tiling generate chromatic numbers of 4 and 7, respectively, a chromatic coloring of 5 can be attained under a more complicated graph where multiple four-coloring Moser spindles are linked so that no monochromatic triples exist in any coloring of the overall graph, as that would generate an equilateral arrangement that tends toward a purely hexagonal structure.

The plane contains a total of five Bravais lattices, or arrays of points defined by discrete translation operations: hexagonal, oblique, rectangular, centered rectangular, and square lattices. The plane can also be tiled monohedrally with convex pentagons in fifteen different ways, three of which have Laves tilings as special cases.[30]

Five points are needed to determine a conic section, in the same way that two points are needed to determine a line.[31] A Veronese surface in the projective plane of a conic generalizes a linear condition for a point to be contained inside a conic.

Illustration by Leonardo da Vinci of a regular dodecahedron, from Luca Pacioli's Divina proportione.

There are Platonic solids in three-dimensional space: the tetrahedron, cube, octahedron, dodecahedron, and icosahedron.[32] The dodecahedron in particular contains pentagonal faces, while the icosahedron, its dual polyhedron, has a vertex figure that is a regular pentagon. There are also :

Regular polyhedron compounds: the stella octangula, compound of five tetrahedra, compound of five cubes, compound of five octahedra, and compound of ten tetrahedra.[33] Icosahedral symmetry is isomorphic to the alternating group on 5 letters of order 120, realized by actions on these uniform polyhedron compounds.

Space-filling convex polyhedra: the triangular prism, hexagonal prism, cube, truncated octahedron, and gyrobifastigium.[34] While the cube is the only Platonic solid that can tessellate space on its own, the truncated octahedron and the gyrobifastigium are the only Archimedean and Johnson solids, respectively, that can also tessellate space with their own copies.

Cell-transitive parallelohedra: any parallelepiped, as well as the rhombic dodecahedron and elongated dodecahedron, and the hexagonal prism and truncated octahedron.[35] The cube is a special case of a parallelepiped, with the rhombic dodecahedron the only Catalan solid to tessellate space on its own.

Regular abstract polyhedra, which include the excavated dodecahedron and the dodecadodecahedron.[36] They have combinatorial symmetries transitive on flags of their elements, with topologies equivalent to that of toroids and the ability to tile the hyperbolic plane.

The 5-cell, or pentatope, is the self-dual fourth-dimensional analogue of the tetrahedron, with Coxeter group symmetry of order 120 = 5! and group structure. Made of five tetrahedra, its Petrie polygon is a regular pentagon and its orthogonal projection is equivalent to the complete graph K5. It is one of six regular 4-polytopes, made of thirty-one elements: five vertices, ten edges, ten faces, five tetrahedral cells and one 4-face.[37]

Overall, the fourth dimension contains five Weyl groups that form a finite number of uniform polychora: , , , , and , with four of these Coxeter groups capable of generating the same finite forms without ; accompanied by a fifth or sixth general group of unique 4-prisms of Platonic and Archimedean solids. There are also a total of five Coxeter groups that generate non-prismatic Eucledian honeycombs in 4-space, alongside five compact hyperbolic Coxeter groups that generate five regular compact hyperbolic honeycombs with finite facets, as with the order-5 5-cell honeycomb and the order-5 120-cell honeycomb, both of which have five cells around each face. Compact hyperbolic honeycombs only exist through the fourth dimension, or rank 5, with paracompact hyperbolic solutions existing through rank 10. Likewise, analogues of three-dimensional icosahedral symmetry or four-dimensional symmetry do not exist in dimensions n ⩾ 5; however, there is the uniform prismatic group × in the fifth dimension which contains prisms of regular and uniform 4-polytopes that have symmetry.

The 5-simplex is the five-dimensional analogue of the 5-cell, or 4-simplex; the fifth iteration of -simplexes in any dimensions. The 5-simplex has the Coxeter group as its symmetry group, of order 720 = 6!, whose group structure is represented by the symmetric group , the only finite symmetric group which has an outer automorphism. The 5-cube, made of ten tesseracts and the 5-cell as its vertex figure, is also regular and one of thirty-one uniform 5-polytopes under the Coxeter hypercubic group. The demipenteract, with one hundred and twenty cells, is the only fifth-dimensional semiregular polytope, and has the rectified 5-cell as its vertex figure, which is one of only three semiregular 4-polytopes alongside the rectified 600-cell and the snub 24-cell. In the fifth dimension, there are five regular paracompact honeycombs, all with infinite facets and vertex figures.[42] There are exclusively twelve complex aperiotopes in complex spaces of dimensions , with fifteen in and sixteen in ; alongside complex polytopes in and higher under simplex, hypercubic and orthoplex groups, the latter with van Oss polytopes.

There are five exceptional Lie groups: , , , , and . The smallest of these, , can be represented in five-dimensional complex space and projected in the same number of dimensions as a ball rolling on top of another ball, whose motion is described in two-dimensional space.[43] , the largest of all five exceptional groups, also contains the other four as subgroups and is constructed with one hundred and twenty quaternionic unit icosians that make up the vertices of the 600-cell. There are also five solvable groups that are excluded from finite simple groups of Lie type.

The five Mathieu groups constitute the first generation in the happy family of sporadic groups. These are also the first five sporadic groups to have been described, defined as multiply transitive permutation groups on objects, with {11, 12, 22, 23, 24}. In particular, , the smallest of all sporadic groups, has a rank 3 action on fifty-five points from an induced action on unordered pairs, as well as two five-dimensional faithful complex irreducible representations over the field with three elements, which is the lowest irreducible dimensional representation of all sporadic group over their respective fields with n elements.[44] Of precisely five different conjugacy classes of maximal subgroups of , one is the almost simple symmetric group (of order 5!), and another is , also almost simple, that functions as a point stabilizer which has as its largest prime factor in its group order: 24·32·5 = 2·3·4·5·6 = 8·9·10 = 720. On the other hand, whereas is sharply 4-transitive, is sharply 5-transitive and is 5-transitive, and as such they are the only two 5-transitive groups that are not symmetric groups or alternating groups. has the first five prime numbers as its distinct prime factors in its order of 27·32·5·7·11, and is the smallest of five sporadic groups with five distinct prime factors in their order. All Mathieu groups are subgroups of , which under the Witt design of Steiner system S(5, 8, 24) emerges a construction of the extended binary Golay code that has as its automorphism group. generates octads from code words of Hamming weight 8 from the extended binary Golay code, one of five different Hamming weights the extended binary Golay code uses: 0, 8, 12, 16, and 24. The Witt design and the extended binary Golay code in turn can be used to generate a faithful construction of the 24-dimensional Leech lattice Λ24, which is the subject of the second generation of seven sporadic groups that are subquotients of the automorphism of the Leech lattice, Conway group .

There are five non-supersingular primes: 37, 43, 53, 61, and 67, all smaller than the largest of fifteen supersingular prime divisors of the friendly giant, 71.[45]

List of basic calculations

Multiplication 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 × x 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Division 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5 ÷ x 5 2.5 1.6 1.25 1 0.83 0.714285 0.625 0.5 0.5 0.45 0.416 0.384615 0.3571428 0.3
x ÷ 5 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Exponentiation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5x 5 25 125 625 3125 15625 78125 390625 1953125 9765625 48828125 244140625 1220703125 6103515625 30517578125
x5 1 32 243 1024 3125 7776 16807 32768 59049 100000 161051 248832 371293 537824 759375

In decimal

5 is the only prime number to end in the digit 5 in decimal because all other numbers written with a 5 in the ones place are multiples of five, which makes it a 1-automorphic number. All multiples of 5 will end in either 5 or 0, and vulgar fractions with 5 or 2 in the denominator do not yield infinite decimal expansions because they are prime factors of 10, the base. In the powers of 5, every power ends with the number five, and from 53 onward, if the exponent is odd, then the hundreds digit is 1, and if it is even, the hundreds digit is 6. A number raised to the fifth power always ends in the same digit as .

Evolution of the Arabic digit

Evolution5glyph.png
Seven-segment 5.svg

The evolution of the modern Western digit for the numeral 5 cannot be traced back to the Indian system, as for the digits 1 to 4. The Kushana and Gupta empires in what is now India had among themselves several different forms that bear no resemblance to the modern digit. The Nagari and Punjabi took these digits and all came up with forms that were similar to a lowercase "h" rotated 180°. The Ghubar Arabs transformed the digit in several different ways, producing from that were more similar to the digits 4 or 3 than to 5.[46] It was from those digits that Europeans finally came up with the modern 5.

While the shape of the character for the digit 5 has an ascender in most modern typefaces, in typefaces with text figures the glyph usually has a descender, as, for example, in

Text figures 256.svg
.

On the seven-segment display of a calculator, it is represented by five segments at four successive turns from top to bottom, rotating counterclockwise first, then clockwise, and vice-versa.

Science

Astronomy

Biology

Computing

Religion and culture

Hinduism

Christianity

Gnosticism

Islam

Judaism

Sikhism

Daoism

Other religions and cultures

Art, entertainment, and media

Fictional entities

Films

Music

Groups

Other uses

Television

Stations
Series

Literature

Sports

Technology

5 as a resin identification code, used in recycling.

Miscellaneous fields

International maritime signal flag for 5
St. Petersburg Metro, Line 5
The fives of all four suits in playing cards
The fives of all four suits in playing cards

Five can refer to:

See also

References

  1. ^ a b c d e Weisstein, Eric W. "5". mathworld.wolfram.com. Retrieved 2020-07-30.
  2. ^ Sloane, N. J. A. (ed.). "Sequence A028388 (Good primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-01.
  3. ^ Weisstein, Eric W. "Mersenne Prime". mathworld.wolfram.com. Retrieved 2020-07-30.
  4. ^ Weisstein, Eric W. "Catalan Number". mathworld.wolfram.com. Retrieved 2020-07-30.
  5. ^ Weisstein, Eric W. "Twin Primes". mathworld.wolfram.com. Retrieved 2020-07-30.
  6. ^ Sloane, N. J. A. (ed.). "Sequence A003273 (Congruent numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-01.
  7. ^ Weisstein, Eric W. "Sierpiński Number of the First Kind". mathworld.wolfram.com. Retrieved 2020-07-30.
  8. ^ Sloane, N. J. A. (ed.). "Sequence A019434 (Fermat primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-07-21.
  9. ^ Sloane, N. J. A. (ed.). "Sequence A000127 (Maximal number of regions obtained by joining n points around a circle by straight lines. Also number of regions in 4-space formed by n-1 hyperplanes.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-10-31.
  10. ^ Weisstein, Eric W. "Perrin Sequence". mathworld.wolfram.com. Retrieved 2020-07-30.
  11. ^ Tao, Terence (March 2014). "Every odd number greater than 1 is the sum of at most five primes" (PDF). Mathematics of Computation. 83 (286): 997–1038. arXiv:1201.6656. doi:10.1090/S0025-5718-2013-02733-0. S2CID 2618958.
  12. ^ Helfgott, Harald Andres (January 2015). "The ternary Goldbach problem". arXiv:1501.05438 [math.NT].
  13. ^ Bourcereau (2015-08-19). "28". Prime Curios!. PrimePages. Retrieved 2022-10-13. The only known number which can be expressed as the sum of the first non-negative integers (1 + 2 + 3 + 4 + 5 + 6 + 7), the first primes (2 + 3 + 5 + 7 + 11) and the first non-primes (1 + 4 + 6 + 8 + 9). There is probably no other number with this property.
  14. ^ Sloane, N. J. A. (ed.). "Sequence A000396 (Perfect numbers k: k is equal to the sum of the proper divisors of k.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-10-13.
  15. ^ Sloane, N. J. A. (ed.). "Sequence A000217 (Triangular numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-10-13.
  16. ^ Richard K. Guy (2004). Unsolved Problems in Number Theory. Springer-Verlag. pp. 84–86. ISBN 0-387-20860-7.
  17. ^ Pomerance, Carl. "On Untouchable Numbers and Related Problems" (PDF). Dartmouth College.
  18. ^ Sloane, N. J. A. (ed.). "Sequence A000326 (Pentagonal numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-11-08.
  19. ^ Sloane, N. J. A. (ed.). "Sequence A005894 (Centered tetrahedral numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-11-08.
  20. ^ Sloane, N. J. A. (ed.). "Sequence A000330 (Square pyramidal numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-11-08.
  21. ^ Sloane, N. J. A. (ed.). "Sequence A001844 (Centered square numbers...Sum of two squares.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-11-08.
  22. ^ Sloane, N. J. A. (ed.). "Sequence A000217 (Triangular numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-11-08. In general, the sum of n consecutive triangular numbers is the nth tetrahedral number.
  23. ^ William H. Richardson. "Magic Squares of Order 3". Wichita State University Dept. of Mathematics. Retrieved 2022-07-14.
  24. ^ Trigg, C. W. (February 1964). "A Unique Magic Hexagon". Recreational Mathematics Magazine. Retrieved 2022-07-14.
  25. ^ Burnstein, Michael (1978). "Kuratowski-Pontrjagin theorem on planar graphs". Journal of Combinatorial Theory, Series B. 24 (2): 228–232. doi:10.1016/0095-8956(78)90024-2.
  26. ^ Holton, D. A.; Sheehan, J. (1993). The Petersen Graph. Cambridge University Press. pp. 9.2, 9.5 and 9.9. ISBN 0-521-43594-3.
  27. ^ Alon, Noga; Grytczuk, Jaroslaw; Hałuszczak, Mariusz; Riordan, Oliver (2002). "Nonrepetitive colorings of graphs" (PDF). Random Structures & Algorithms. 2 (3–4): 337. doi:10.1002/rsa.10057. MR 1945373. S2CID 5724512. A coloring of the set of edges of a graph G is called non-repetitive if the sequence of colors on any path in G is non-repetitive...In Fig. 1 we show a non-repetitive 5-coloring of the edges of P... Since, as can easily be checked, 4 colors do not suffice for this task, we have π(P) = 5.
  28. ^ Royle, G. "Cubic Symmetric Graphs (The Foster Census)." Archived 2008-07-20 at the Wayback Machine
  29. ^ de Grey, Aubrey D.N.J. (2018). "The Chromatic Number of the Plane Is at least 5". Geombinatorics. 28: 5–18. arXiv:1804.02385. Bibcode:2016arXiv160407134W.
  30. ^ Grünbaum, Branko; Shephard, Geoffrey C. (1987). "Tilings by polygons". Tilings and Patterns. New York: W. H. Freeman and Company. ISBN 978-0-7167-1193-3. MR 0857454. Section 9.3: "Other Monohedral tilings by convex polygons".
  31. ^ Dixon, A. C. (March 1908). "The Conic through Five Given Points". The Mathematical Gazette. The Mathematical Association. 4 (70): 228–230. doi:10.2307/3605147. JSTOR 3605147. S2CID 125356690.
  32. ^ Bryan Bunch, The Kingdom of Infinite Number. New York: W. H. Freeman & Company (2000): 61
  33. ^ Skilling, John (1976). "Uniform Compounds of Uniform Polyhedra". Mathematical Proceedings of the Cambridge Philosophical Society. 79 (3): 447–457. Bibcode:1976MPCPS..79..447S. doi:10.1017/S0305004100052440. MR 0397554. S2CID 123279687.
  34. ^ Kepler, Johannes (2010). The Six-Cornered Snowflake. Paul Dry Books. Footnote 18, p. 146. ISBN 9781589882850.
  35. ^ Alexandrov, A. D. (2005). "8.1 Parallelohedra". Convex Polyhedra. Springer. pp. 349–359.
  36. ^ Wills, J. M. (1987). "The combinatorially regular polyhedra of index 2". Aequationes Mathematicae. 34 (2–3): 206–220. doi:10.1007/BF01830672. S2CID 121281276.
  37. ^ H. S. M. Coxeter (1973). Regular Polytopes (3 ed.). New York: Dover Publications, Inc. p. 120. ISBN 978-0-486-61480-9.
  38. ^ H. S. M. Coxeter (1973). Regular Polytopes (3 ed.). New York: Dover Publications, Inc. p. 124. ISBN 978-0-486-61480-9.
  39. ^ John Horton Conway; Heidi Burgiel; Chaim Goodman-Strass (2008). The Symmetries of Things. A K Peters/CRC Press. ISBN 978-1-56881-220-5. Chapter 26: "The Grand Antiprism"
  40. ^ Coxeter, H. S. M. (1982). "Ten toroids and fifty-seven hemidodecahedra". Geometriae Dedicata. 13 (1): 87–99. doi:10.1007/BF00149428. MR 0679218. S2CID 120672023..
  41. ^ Coxeter, H. S. M (1984). "A Symmetrical Arrangement of Eleven Hemi-Icosahedra". Annals of Discrete Mathematics (20): 103–114. doi:10.1016/S0304-0208(08)72814-7.
  42. ^ H.S.M. Coxeter (1956). "Regular Honeycombs in Hyperbolic Space": 168. CiteSeerX 10.1.1.361.251. ((cite journal)): Cite journal requires |journal= (help)
  43. ^ John Baez and John Huerta (2014). "G2 and the rolling ball". Trans. Amer. Math. Soc. 366 (10): 5257–5293. arXiv:1205.2447. doi:10.1090/s0002-9947-2014-05977-1.
  44. ^ Jansen, Christoph (2005-06-27). "The Minimal Degrees of Faithful Representations of the Sporadic Simple Groups and their Covering Groups". LMS Journal of Computation and Mathematics. 8: 123–124. doi:10.1112/S1461157000000930.
  45. ^ Luis J. Boya (2011-01-16). "Introduction to Sporadic Groups". Symmetry, Integrability and Geometry: Methods and Applications. 7: 13. arXiv:1101.3055. Bibcode:2011SIGMA...7..009B. doi:10.3842/SIGMA.2011.009. S2CID 16584404.
  46. ^ Georges Ifrah, The Universal History of Numbers: From Prehistory to the Invention of the Computer transl. David Bellos et al. London: The Harvill Press (1998): 394, Fig. 24.65
  47. ^ "Atomic Number of Elements in Periodic Table". www.atomicnumber.net. Retrieved 2020-08-02.
  48. ^ Cinalli, G.; Maixner, W. J.; Sainte-Rose, C. (2012-12-06). Pediatric Hydrocephalus. Springer Science & Business Media. p. 19. ISBN 978-88-470-2121-1. The five appendages of the starfish are thought to be homologous to five human buds
  49. ^ Cantelmo, Mr Alessandro; Melina, Mr Giovanni; Papageorgiou, Mr Chris (2019-10-11). Macroeconomic Outcomes in Disaster-Prone Countries. International Monetary Fund. p. 25. ISBN 978-1-5135-1731-5. where Category 5 includes the most powerful hurricane
  50. ^ Lindop, Laurie (2003-01-01). Chasing Tornadoes. Twenty-First Century Books. p. 58. ISBN 978-0-7613-2703-5. The strongest tornado would be an F5
  51. ^ Pugh, Philip (2011-11-02). Observing the Messier Objects with a Small Telescope: In the Footsteps of a Great Observer. Springer Science & Business Media. p. 44. ISBN 978-0-387-85357-4. M5, like the previous objects in the Messier Catalogue is a globular star cluster in Serpen
  52. ^ Ford, Dominic. "The galaxy NGC 5". In-The-Sky.org. Retrieved 2020-08-02.
  53. ^ Marcus, Jacqueline B. (2013-04-15). Culinary Nutrition: The Science and Practice of Healthy Cooking. Academic Press. p. 55. ISBN 978-0-12-391883-3. There are five basic tastes: sweet, salty, sour, bitter and umami...
  54. ^ Kisia, S. M. (2010), Vertebrates: Structures and Functions, Biological Systems in Vertebrates, CRC Press, p. 106, ISBN 978-1-4398-4052-8, The typical limb of tetrapods is the pentadactyl limb (Gr. penta, five) that has five toes. Tetrapods evolved from an ancestor that had limbs with five toes. ... Even though the number of digits in different vertebrates may vary from five, vertebrates develop from an embryonic five-digit stage.
  55. ^ Pozrikidis, Constantine (2012-09-17). XML in Scientific Computing. CRC Press. p. 209. ISBN 978-1-4665-1228-3. 5 5 005 ENQ (enquiry)
  56. ^ Narayan, M. K. V. (2007). Flipside of Hindu Symbolism: Sociological and Scientific Linkages in Hinduism. Fultus Corporation. p. 105. ISBN 978-1-59682-117-0. Shiva has five faces;
  57. ^ "CATHOLIC ENCYCLOPEDIA: The Five Sacred Wounds". www.newadvent.org. Retrieved 2020-08-02.
  58. ^ "PBS – Islam: Empire of Faith – Faith – Five Pillars". www.pbs.org. Retrieved 2020-08-03.
  59. ^ "Why Muslims Pray 5 Times A Day". MuslimInc. 2016-05-20. Retrieved 2020-08-03.
  60. ^ "Panj Tan Paak – The Ahl-e Bayt – The Five Purified Ones of Allah". www.amaana.org. Retrieved 2020-08-03.
  61. ^ Pelaia, Ariela. "Judaism 101: What Are the Five Books of Moses?". Learn Religions. Retrieved 2020-08-03.
  62. ^ Peterson, Eugene H. (2000-01-06). Psalms: Prayers of the Heart. InterVarsity Press. p. 6. ISBN 978-0-8308-3034-3. The Psalms are arranged into five books
  63. ^ Zenner, Walter P. (1988-01-01). Persistence and Flexibility: Anthropological Perspectives on the American Jewish Experience. SUNY Press. p. 284. ISBN 978-0-88706-748-8.
  64. ^ Desai, Anjali H. (2007). India Guide Gujarat. India Guide Publications. p. 36. ISBN 978-0-9789517-0-2. ...he prescribed five sacred symbols to create a unified ident
  65. ^ Chen, Yuan (2014). "Legitimation Discourse and the Theory of the Five Elements in Imperial China". Journal of Song-Yuan Studies. 44 (1): 325–364. doi:10.1353/sys.2014.0000. ISSN 2154-6665. S2CID 147099574.
  66. ^ Katz, Paul R. (1995-01-01). Demon Hordes and Burning Boats: The Cult of Marshal Wen in Late Imperial Chekiang. SUNY Press. p. 55. ISBN 978-1-4384-0848-4. using the title the Five Emperors
  67. ^ Yoon, Hong-key (2006). The Culture of Fengshui in Korea: An Exploration of East Asian Geomancy. Lexington Books. p. 59. ISBN 978-0-7391-1348-6. The first category is the Five Agents [Elements] namely, Water, Fire, Wood, Metal, and Earth.
  68. ^ Walsh, Len (2008-11-15). Read Japanese Today: The Easy Way to Learn 400 Practical Kanji. Tuttle Publishing. ISBN 978-1-4629-1592-7. The Japanese names of the days of the week are taken from the names of the seven basic nature symbols
  69. ^ Smith, David H. (2010-04-06). Religious Giving: For Love of God. Indiana University Press. p. 36. ISBN 978-0-253-00418-5. Nation of Gods and Earths (also known as the Five Percenters),
  70. ^ Allcroft, Britt; Friends, Thomas &; Awdry, W. (2014). James the Splendid Red Engine. Egmont UK Limited. ISBN 978-1-4052-7506-4. Meet Sodor's number 5 engine
  71. ^ O'Sullivan, Emer (2005-03-05). Comparative Children's Literature. Routledge. p. 122. ISBN 978-1-134-40485-8. the super-robot Number 5 in the film Short Circuit,
  72. ^ Lore, Pittacus (2013). The Fall of Five. Michael Joseph. ISBN 978-0-7181-5650-3.
  73. ^ Windham, Ryder (2008). Indiana Jones Collector's Edition. Scholastic. p. 298. ISBN 978-0-545-09183-1. he gave him the five sacred stones with magical properties
  74. ^ Chance, Jane (2016-11-21). Tolkien, Self and Other: "This Queer Creature". Springer. p. 70. ISBN 978-1-137-39896-3. These five included the head wizard,
  75. ^ Jacoby, Henry (2012-02-23). Game of Thrones and Philosophy: Logic Cuts Deeper Than Swords. John Wiley & Sons. p. 34. ISBN 978-1-118-20605-8. ...view the events of A Song of Ice and Fire. As we'll see, the War of the Five Kings
  76. ^ Netflix; Way, Gerard; Ba, Gabriel (2020). The Making of the Umbrella Academy. Dark Horse Comics. p. 21. ISBN 978-1-5067-1357-1.
  77. ^ Palmer, Scott (1988). British Film Actors' Credits, 1895–1987. McFarland. p. 261. ISBN 978-0-89950-316-5.
  78. ^ The Fifth Element (1997), retrieved 2020-08-03
  79. ^ Fast Five (2011), retrieved 2020-08-03
  80. ^ V for Vendetta (2006), retrieved 2020-08-03
  81. ^ Wood, Stephanie (2013-01-31). "'We were a train crash": 5ive talk tears, breakdowns and anger on The Big Reunion". mirror. Retrieved 2020-08-01.
  82. ^ Figes, Orlando (2014-02-11). Natasha's Dance: A Cultural History of Russia. Henry Holt and Company. ISBN 978-1-4668-6289-0. Also sometimes referred to as 'The Mighty Five' or 'Mighty Handful': Balakirev, Rimsky Korsakov, Borodin, Cui and Musorgsky
  83. ^ "The Five Americans | Biography, Albums, Streaming Links". AllMusic. Retrieved 2020-08-01.
  84. ^ "Werewolf by the Five Man Electrical Band –". Vancouver Pop Music Signature Sounds. 2019-05-08. Retrieved 2021-01-28.
  85. ^ "Up close with Maroon 5- Facebook and Twitter competition to give patron meeting with Rock band". jamaica-gleaner.com. 2011-01-02. Retrieved 2020-08-01.
  86. ^ "MC5 | Biography, Albums, Streaming Links". AllMusic. Retrieved 2020-08-01.
  87. ^ NJ.com, Vicki Hyman | NJ Advance Media for (2011-11-29). "Pentatonix scores 'The Sing-Off' title". nj. Retrieved 2020-08-01.
  88. ^ "5th Dimension's Florence LaRue charms sold-out crowds at Savannah Center - Villages-News.com". Villages-News: News, crime, classifieds, government, events in The Villages, FL. 2016-06-22. Retrieved 2020-08-01.
  89. ^ "For Dave Clark Five, the accolades finally arrive - USATODAY.com". usatoday30.usatoday.com. Retrieved 2020-08-02.
  90. ^ "Inside the Jackson machine". British GQ. 7 February 2018. Retrieved 2020-08-02.
  91. ^ "Grandmaster Flash and the Furious Five: inducted in 2007". The Rock and Roll Hall of Fame and Museum. 2012-10-09. Archived from the original on 2012-10-09. Retrieved 2020-08-02.
  92. ^ "Fifth Harmony's 'Reflection,' Halsey's 'Badlands' Certified Gold As RIAA Adds Track Sales, Streams". Headline Planet. 2016-02-01. Retrieved 2020-08-02.
  93. ^ "Discography; Ben Folds Five". Australian Charts. Retrieved 2020-08-02.
  94. ^ Niesel, Jeff. "R5 Opts for a More Mature Sound on its Latest Album, 'Sometime Last Night'". Cleveland Scene. Retrieved 2020-08-02.
  95. ^ Danneley, John Feltham (1825). An Encyclopaedia, Or Dictionary of Music ...: With Upwards of Two Hundred Engraved Examples, the Whole Compiled from the Most Celebrated Foreign and English Authorities, Interspersed with Observations Critical and Explanatory. editor, and pub. are the perfect fourth, perfect fifth, and the octave
  96. ^ "STAVE | meaning in the Cambridge English Dictionary". dictionary.cambridge.org. Retrieved 2020-08-02. the five lines and four spaces between them on which musical notes are written
  97. ^ Ammer, Christine (2004). The Facts on File Dictionary of Music. Infobase Publishing. p. 331. ISBN 978-1-4381-3009-5. Quintet 1 An ensemble made up of five instruments or voices
  98. ^ Ricker, Ramon (1999-11-27). Pentatonic Scales for Jazz Improvisation. Alfred Music. p. 2. ISBN 978-1-4574-9410-9. Pentatonic scales, as used in jazz, are five note scales
  99. ^ Sweney, Mark (2010-08-11). "Richard Desmond rebrands Five as Channel 5". The Guardian. ISSN 0261-3077. Retrieved 2020-08-03.
  100. ^ Interaksyon (2017-10-12). "ESPN-5 IS HERE | TV5 announces partnership with 'Worldwide Leader in Sports'". Interaksyon. Retrieved 2020-08-03.
  101. ^ "Everything You Need To Know About Babylon 5". io9. Retrieved 2020-08-03.
  102. ^ "BBC – Norfolk On Stage – HI-5 Comes Alive at the Theatre Royal". www.bbc.co.uk. Retrieved 2020-08-03.
  103. ^ Odyssey 5, retrieved 2020-08-03
  104. ^ Hawaii Five-0, retrieved 2020-08-03
  105. ^ Powers, Kevin (2019-03-06). "The Moral Clarity of 'Slaughterhouse-Five' at 50". The New York Times. ISSN 0362-4331. Retrieved 2020-08-03.
  106. ^ "Olympic Rings – Symbol of the Olympic Movement". International Olympic Committee. 2020-06-23. Retrieved 2020-08-02.
  107. ^ "Rules of the Game". FIBA.basketball. Retrieved 2020-08-02.
  108. ^ Macalister, Terry (2007-09-04). "Popularity of five-a-side kicks off profits". The Guardian. ISSN 0261-3077. Retrieved 2020-08-02.
  109. ^ Sharp, Anne Wallace (2010-11-08). Ice Hockey. Greenhaven Publishing LLC. p. 18. ISBN 978-1-4205-0589-4. Major penalties of five minutes
  110. ^ Blevins, David (2012). The Sports Hall of Fame Encyclopedia: Baseball, Basketball, Football, Hockey, Soccer. Rowman & Littlefield. p. 585. ISBN 978-0-8108-6130-5. scoring five goals in five different ways: an even-strength goal, a power-play goal, a shorthanded goal, a penalty shot goal...
  111. ^ Times, The New York (2004-11-05). The New York Times Guide to Essential Knowledge: A Desk Reference for the Curious Mind. Macmillan. p. 713. ISBN 978-0-312-31367-8. five-hole the space between a goaltender's legs
  112. ^ McNeely, Scott (2012-09-14). Ultimate Book of Sports: The Essential Collection of Rules, Stats, and Trivia for Over 250 Sports. Chronicle Books. p. 189. ISBN 978-1-4521-2187-1. a “try,” worth 5 points;
  113. ^ Poulton, Mark L. (1997). Fuel Efficient Car Technology. Computational Mechanics Publications. p. 65. ISBN 978-1-85312-447-1. The 5 - speed manual gearbox is likely to remain the most common type
  114. ^ "What Does "Five by Five" mean? | Five by Five Definition Brand Evolution". Five by Five. 2019-07-16. Retrieved 2020-08-02.
  115. ^ Gaskin, Shelley (2009-01-31). Go! with 2007. CRC PRESS. p. 615. ISBN 978-0-13-239020-0. the number 5 key has a raised bar or dot that helps you identify it by touch
  116. ^ Stewart, George (1985). The C-64 Program Factory. Osborn McGraw-Hill. p. 278. ISBN 978-0-88134-150-8. ...digit in the phone number is a 5 , which corresponds to the triplet J , K , L
  117. ^ Atlantic (2007-06-13). Encyclopedia Of Information Technology. Atlantic Publishers & Dist. p. 659. ISBN 978-81-269-0752-6. The Pentium is a fifth-generation x86 architecture...
  118. ^ Stevens, E. S. (2020-06-16). Green Plastics: An Introduction to the New Science of Biodegradable Plastics. Princeton University Press. p. 45. ISBN 978-0-691-21417-7. polypropylene 5
  119. ^ Corporation, Bonnier (1937). Popular Science. Bonnier Corporation. p. 32. ...another picture of one of the world's most famous babies was made. Fred Davis is official photographer of the Dionne quintuplets...
  120. ^ Smith, Rich (2010-09-01). Fifth Amendment: The Right to Fairness. ABDO Publishing Company. p. 20. ISBN 978-1-61784-256-6. Someone who stands on his or her right to avoid self incrimination is said in street language to be “taking the Fifth,” or “pleading the Fifth.”
  121. ^ Veith (Jr.), Gene Edward; Wilson, Douglas (2009). Omnibus IV: The Ancient World. Veritas Press. p. 52. ISBN 978-1-932168-86-0. The most common accentual-syllabic lines are five-foot iambic lines (iambic pentameter)
  122. ^ Kronland-Martinet, Richard; Ystad, Sølvi; Jensen, Kristoffer (2008-07-19). Computer Music Modeling and Retrieval. Sense of Sounds: 4th International Symposium, CMMR 2007, Copenhagen, Denmark, August 2007, Revised Papers. Springer. p. 502. ISBN 978-3-540-85035-9. Plato and Aristotle postulated a fifth state of matter, which they called "idea" or quintessence" (from "quint" which means "fifth")
  123. ^ Roads, United States Congress Senate Committee on Public Works Subcommittee on (1970). Designating Highway U.S. 50 as Part of the Interstate System, Nevada: Hearings, Ninety-first Congress, First Session; Carson City, Nevada, October 6, 1969; [and] Ely, Nevada, October 7, 1969. U.S. Government Printing Office. p. 78.
  124. ^ Sonderman, Joe (2010). Route 66 in New Mexico. Arcadia Publishing. p. 7. ISBN 978-0-7385-8029-6. North - south highways got odd numbers , the most important ending in 5
  125. ^ Cusack, Professor Carole M. (2013-06-28). Invented Religions: Imagination, Fiction and Faith. Ashgate Publishing, Ltd. p. 31. ISBN 978-1-4094-8103-4. Law of Fives is never wrong'. This law is the reason 23 is a significant number for Discordians...
  126. ^ Lazarus, Richard J. (2020-03-10). The Rule of Five: Making Climate History at the Supreme Court. Harvard University Press. p. 252. ISBN 978-0-674-24515-0. ...Justice Brennan's infamous "Rule of Five,"
  127. ^ Laplante, Philip A. (2018-10-03). Comprehensive Dictionary of Electrical Engineering. CRC Press. p. 562. ISBN 978-1-4200-3780-7. quincunx five points
  128. ^ Hargrove, Julia (2000-03-01). John F. Kennedy's Inaugural Address. Lorenz Educational Press. p. 24. ISBN 978-1-57310-222-3. The five permanent members have a veto power over actions proposed by members of the United Nations.
  129. ^ Adams, Mark (2015-03-10). Meet Me in Atlantis: My Obsessive Quest to Find the Sunken City. Penguin. p. 272. ISBN 978-0-698-18621-7. ...between two of a pentagon's five interior angles to the length of any of its five sides is the golden section..
  130. ^ Hand, Seven Star (2010-09-17). Finishing the Mysteries of Gods and Symbols: Volume 0. Seven Star Hand. p. 90. ISBN 978-1-257-93419-5. ...the pentacle as a five-pointed star (pentagram) ...
  131. ^ McGee, Steven R. (2012-01-01). Evidence-based Physical Diagnosis. Elsevier Health Sciences. p. 120. ISBN 978-1-4377-2207-9. There are five Korotkoff phases...
  132. ^ "punch | Origin and meaning of punch by Online Etymology Dictionary". www.etymonline.com. Retrieved 2020-08-01. ...said to derive from Hindi panch "five," in reference to the number of original ingredients
  133. ^ Berke, Richard L.; Times, Special To the New York (1990-10-15). "G.O.P. Senators See Politics In Pace of Keating 5 Inquiry". The New York Times. ISSN 0362-4331. Retrieved 2020-08-01.
  134. ^ "Keith Giffen Revives Inferior Five for DC Comics in September – What to Do With Woody Allen?". bleedingcool.com. 14 June 2019. Retrieved 2020-08-01.
  135. ^ "For the first time". Inside Chanel. Retrieved 2020-08-01.
  136. ^ Beeman, Richard R. (2013-05-07). Our Lives, Our Fortunes and Our Sacred Honor: The Forging of American Independence, 1774–1776. Basic Books. p. 407. ISBN 978-0-465-03782-7. On Friday, June 28, the Committee of Five delivered its revised draft of Jefferson's draft of the Declaration of Independence
  137. ^ Skarnulis, Leanna. "5 Second Rule For Food". WebMD. Retrieved 2020-08-01.
  138. ^ Newsweek. Newsweek. 1963. p. 71. His newest characters: a boy named 555 95472, or 5 for short,