Designer drugs are structural or functional analogues of controlled substances that are designed to mimic the pharmacological effects of the parent drug while avoiding detection or classification as illegal. Many of the older designer drugs (research chemicals) are structural analogues of psychoactive tryptamines or phenethylamines but there are many other chemically unrelated new psychoactive substances that can be considered part of the designer drug group.[1][2][3][4] Designer drugs can also include substances that are not psychoactive in effect, such as analogues of controlled anabolic steroids and other performance and image enhancing drugs (PIEDs), including nootropics, weight loss drugs and erectile dysfunction medications. The pharmaceutical activities of these compounds might not be predictable based strictly upon structural examination. Many of the substances have common effects while structurally different or different effects while structurally similar due to SAR paradox. As a result of no real official naming for some of these compounds, as well as regional naming, this can all lead to potentially hazardous mix ups for users.[5] The following list is not exhaustive.
A psychedelic substance is a psychoactive drug whose primary action is to alter cognition and perception. Psychedelics tend to affect and explore the mind in ways that result in the experience being qualitatively different from those of ordinary consciousness. The psychedelic experience is often compared to non-ordinary forms of consciousness such as trance, meditation, yoga, religious ecstasy, dreaming and even near-death experiences.
Drugs containing the tryptamine moiety are typically substrates for the serotonin receptors, in keeping with their close structural resemblance to serotonin, a neurotransmitter.
Drugs containing the phenethylamine moiety bear close structural resemblance to dopamine but substitution on the benzene ring gives rise to drugs with a much higher affinity for serotonin receptors.
The DOx family of psychedelics are also known as "substituted amphetamines" as they contain the amphetamine backbone but are substituted on the benzene ring. This gives rise to serotonin agonists similar to the 2C-X class but more resistant to elimination in the body.
Dissociatives are a class of hallucinogens which distort perceptions of sight and sound and produce feelings of detachment - dissociation - from the environment and self. This is done through reducing or blocking signals to the conscious mind from other parts of the brain. Although many kinds of drugs are capable of such action, dissociatives are unique in that they do so in such a way that they produce hallucinogenic effects, which may include sensory deprivation, dissociation, hallucinations, and dream-like states or trances. Some, which are nonselective in action and affect the dopamine and/or opioid systems, may be capable of inducing euphoria. Many dissociatives have general depressant effects and can produce sedation, respiratory depression, analgesia, anesthesia, and ataxia, as well as cognitive and memory impairment and amnesia.
Piperazine containing designer drugs have effects similar to MDMA (ecstasy). This class of drugs are mimics of serotonin that activate 5-HT receptor subtypes that release norepinephrine and dopamine.
Empathogens are a class of psychoactive drugs that produce distinctive emotional and social effects similar to those of MDMA. Users of empathogens say the drugs often produce feelings of empathy, love, and emotional closeness to others.
MDxx
Substituted methylenedioxyphenethylamines (MDxx) are a large chemical class of derivatives of the phenethylamines, which includes many psychoactive drugs that act as entactogens, psychedelics, and/or stimulants, as well as entheogens.
Benzofurans are similar in structure to MD(M)A but differ in that the methylenedioxy groups have been modified, removing one of the two oxygens in the methylenedioxy ring to render a benzofuran ring.
Drugs containing the tryptamine moiety are typically substrates for the serotonin receptors, in keeping with their close structural resemblance to serotonin, a neurotransmitter.
Substituted amphetamines are a chemical class of stimulants, entactogens, hallucinogens, and other drugs. They feature a phenethylamine core with a methyl group attached to the alpha carbon resulting in amphetamine, along with additional substitutions.
Stimulants produce a variety of different kinds of effects by enhancing the activity of the central and peripheral nervous systems. Common effects, which vary depending on the substance and dosage in question, may include enhanced alertness, awareness, wakefulness, endurance, productivity, and motivation, increased arousal, locomotion, heart rate, and blood pressure, and the perception of a diminished requirement for food and sleep.
Amphetamines
Amphetamines are a chemical class of stimulants, entactogens, hallucinogens, and other drugs. They feature a phenethylamine core with a methyl group attached to the alpha carbon resulting in amphetamine, along with additional substitutions.
Cathinones include some stimulants and entactogens, which are derivatives of cathinone. They feature a phenethylamine core with an alkyl group attached to the alpha carbon, and a ketone group attached to the beta carbon, along with additional substitutions.
Tropane alkaloids occur in plants of the families erythroxylaceae (including coca). Piperidine and its derivatives are ubiquitous building blocks in the synthesis of many pharmaceuticals and fine chemicals.
Oxazolidines are a five-membered ring compounds consisting of three carbons, a nitrogen, and an oxygen. The oxygen and NH are the 1 and 3 positions, respectively. In oxazolidine derivatives, there is always a carbon between the oxygen and the nitrogen.
Sedatives are substances that induces sedation by reducing irritability or excitement. At higher doses they may result in slurred speech, staggering gait, poor judgment, and slow, uncertain reflexes. Doses of sedatives such as benzodiazepines, when used as a hypnotic to induce sleep, tend to be higher than amounts used to relieve anxiety, whereas only low doses are needed to provide a peaceful effect.
Sedatives can be misused to produce an overly-calming effect. In the event of an overdose or if combined with another sedative, many of these drugs can cause unconsciousness and even death.
Selective androgen receptor modulators (SARMs) are a novel class of androgen receptor ligands. They are intended to maintain the desirable muscle building effects of anabolic steroids while reducing undesirable androgenic actions (e.g., increased risk of prostate cancer). SARMs that are more selective in their action could potentially be used for a broader range of clinical indications other than the relatively limited legitimate uses that anabolic steroids are currently approved for.[99]
Caffeine – a meta-analysis found an increase in alertness and attentional performance.[108][106]
Eugeroics (armodafinil and modafinil) – are classified as "wakefulness-promoting agents"; modafinil increases alertness, particularly in sleep-deprived individuals, and facilitates reasoning and problem solving in non-ADHD youth.[105] In a systematic review of small, preliminary studies where the effects of modafinil were examined, when simple psychometric assessments were considered, modafinil intake enhanced executive function.[109] Modafinil may not produce improvements in mood or motivation in sleep deprived or non-sleep deprived individuals.[110]
Nicotine – a meta-analysis of 41 clinical studies concluded that nicotine administration or smoking improves alerting and orienting attention and episodic and working memory and slightly improves fine motor performance.[112]
A 2016 review reported that theanine may increase alpha waves in the brain. Alpha waves may contribute to a relaxed yet alert mental state.[113] A 2014 systematic review and meta-analysis found that concurrent caffeine and L-theanine use had synergistic psychoactive effects that promoted alertness, attention, and task switching. These effects were most pronounced during the first hour post-dose.[108]
Piracetam is not a vitamin, mineral, amino acid, herb or other botanical, or dietary substance for use by humans to supplement the diet by increasing the total dietary intake. Further, piracetam is not a concentrate, metabolite, constituent, extract or combination of any such dietary ingredient. [...] Accordingly, these products are drugs, under section 201(g)(1)(C) of the Act, 21 U.S.C. § 321(g)(1)(C), because they are not foods and they are intended to affect the structure or any function of the body. Moreover, these products are new drugs as defined by section 201(p) of the Act, 21 U.S.C. § 321(p), because they are not generally recognized as safe and effective for use under the conditions prescribed, recommended, or suggested in their labeling.[118]
Some of the most widely used nootropic substances are the cholinergics. These are typically compounds and analogues of choline. Choline is an essential nutrient needed for the synthesis of acetylcholine (a neurotransmitter), and phosphatidylcholine (a structural component of cell membranes).
Alpha-GPC – L-Alpha glycerylphosphorylcholine has thus far only been studied in the context of cognitive performance alongside other substances such as caffeine.[119] A more comprehensive meta-analysis is needed before any strong conclusions are made about Alpha-GPC's usefulness as a nootropic.
Choline bitartrate – Choline bitartrate is a tartaric acid salt containing choline (41% choline by molecular weight). At least one meta-analysis has found choline bitartrate to be ineffective at improving any measure of cognitive performance.[120]
Citicoline – Compound consisting of choline and cytidine. Several meta-analyses found that it is likely effective for improving memory and learning in older people with mild cognitive decline, as well as in people who are recovering from a stroke.[121][122][123] There is little evidence it enhances cognition in young, healthy people.
ISRIB enhanced spatial and fear-associated learning.[124]
Levodopa – a systematic review noted that it improved verbal episodic memory and episodic memory encoding.[125] and is sold as M pruriens dietary supplements in the US.[126]
Nicergoline may improve human cognitive performance, including concentration, psychomotor performance, attention, reaction times, and other indicators of brain function.[127]
The cognitive enhancing effects of pramipexole, guanfacine, clonidine, and fexofenadine have been tested, but no significant cognition-enhancing effects in healthy individuals were found.[125]
Psychedelic microdosing is the novel practice of using sub-threshold doses (microdoses) of psychedelic drugs in an attempt to improve mood and cognition.[128] The efficacy of this has not been verified.[129][130] In a study examining the qualitative reports of 278 microdosers the researchers found that there were mixed results among users.[131] While some users reported positive effects such as improved mood and cognition, others paradoxically reported negative effects such as physiological discomfort and anxiety.[131] In one of the only double-blind, randomized studies to date, those given microdoses of LSD did not perform better than those given the placebo on cognitive tasks.[132]
^Shimizu E, Watanabe H, Kojima T, Hagiwara H, Fujisaki M, Miyatake R, et al. (January 2007). "Combined intoxication with methylone and 5-MeO-MIPT". Progress in Neuro-Psychopharmacology & Biological Psychiatry. 31 (1): 288–291. doi:10.1016/j.pnpbp.2006.06.012. PMID16876302. S2CID29089303.
^Trachsel D, Lehmann D, Enzensperger C (2013). Phenethylamine Von der Struktur zur Funktion. Nachtschatten Verlag AG. ISBN978-3-03788-700-4.
^Glennon RA, Bondarev ML, Khorana N, Young R, May JA, Hellberg MR, et al. (November 2004). "Beta-oxygenated analogues of the 5-HT2A serotonin receptor agonist 1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane". Journal of Medicinal Chemistry. 47 (24): 6034–6041. doi:10.1021/jm040082s. PMID15537358.
^Morris H, Wallach J (2014). "From PCP to MXE: a comprehensive review of the non-medical use of dissociative drugs". Drug Testing and Analysis. 6 (7–8): 614–632. doi:10.1002/dta.1620. PMID24678061.
^ abcdefKaizaki-Mitsumoto A, Noguchi N, Yamaguchi S, Odanaka Y, Matsubayashi S, Kumamoto H, et al. (January 2016). "Three 25-NBOMe-type drugs, three other phenethylamine-type drugs (25I-NBMD, RH34, and escaline), eight cathinone derivatives, and a phencyclidine analog MMXE, newly identified in ingredients of drug products before they were sold on the drug market". Forensic Toxicology. 34 (1): 108–114. doi:10.1007/s11419-015-0293-6. ISSN1860-8965. S2CID45890497.
^"4F-IVP". Cayman Chemical. Retrieved 29 September 2015.
^"4-FPD". Cayman Chemical. Retrieved 7 April 2015.
^ abcdeUchiyama N, Matsuda S, Kawamura M, Shimokawa Y, Kikura-Hanajiri R, Aritake K, et al. (October 2014). "Characterization of four new designer drugs, 5-chloro-NNEI, NNEI indazole analog, α-PHPP and α-POP, with 11 newly distributed designer drugs in illegal products". Forensic Science International. 243: 1–13. doi:10.1016/j.forsciint.2014.03.013. PMID24769262.
^Weiß JA, Taschwer M, Kunert O, Schmid MG (March 2015). "Analysis of a new drug of abuse: cathinone derivative 1-(3,4-dimethoxyphenyl)-2-(ethylamino)pentan-1-one". Journal of Separation Science. 38 (5): 825–828. doi:10.1002/jssc.201401052. PMID25545103.
^Gaspar H, Bronze S, Ciríaco S, Queirós CR, Matias A, Rodrigues J, et al. (July 2015). "4F-PBP (4'-fluoro-α-pyrrolidinobutyrophenone), a new substance of abuse: Structural characterization and purity NMR profiling". Forensic Science International. 252: 168–176. doi:10.1016/j.forsciint.2015.05.003. PMID26005857.
^Shintani-Ishida K, Nakamura M, Tojo M, Idota N, Ikegaya H (May 2015). "Identification and quantification of 4′-methoxy-α-pyrrolidinobutiophenone (4-MeOPBP) in human plasma and urine using LC–TOF-MS in an autopsy case". Forensic Toxicology. 33 (2): 348–354. doi:10.1007/s11419-015-0281-x. S2CID24716021.
^Power JD, Scott KR, Gardner EA, Curran McAteer BM, O'Brien JE, Brehon M, et al. (January 2014). "The syntheses, characterization and in vitro metabolism of nitracaine, methoxypiperamide and mephtetramine". Drug Testing and Analysis. 6 (7–8): 668–675. doi:10.1002/dta.1616. PMID24574100.
^Trigg S, Wells JM, McGann J, Bock S, Holman A, Harrison SM, et al. (September 2022). "The alprazolam analogue 4'-chloro deschloroalprazolam identified in seized capsules". Drug Testing and Analysis. 14 (9): 1672–1680. doi:10.1002/dta.3325. PMID35666014. S2CID249382539.
^Andronati SA, Zin'kovskiĭ VG, Totrova MI, Golovenko NI, Stankevich EA, Zhuk OV (January 1992). "[Biokinetics of a new prodrug gidazepam and its metabolite]". Biulleten' Eksperimental'noi Biologii I Meditsiny. 113 (1): 45–47. PMID1356504.
^"EG-2201". Cayman Chemical. Retrieved 27 October 2015.
^ abMogler L, Franz F, Wilde M, Huppertz LM, Halter S, Angerer V, et al. (September 2018). "Phase I metabolism of the carbazole-derived synthetic cannabinoids EG-018, EG-2201, and MDMB-CHMCZCA and detection in human urine samples". Drug Testing and Analysis. 10 (9): 1417–1429. doi:10.1002/dta.2398. PMID29726116.
^ abcQian Z, Jia W, Li T, Hua Z, Liu C (January 2017). "Identification and analytical characterization of four synthetic cannabinoids ADB-BICA, NNL-1, NNL-2, and PPA(N)-2201". Drug Testing and Analysis. 9 (1): 51–60. doi:10.1002/dta.1990. PMID27239006.
^Krotulski AJ, Mohr AL, Kacinko SL, Fogarty MF, Shuda SA, Diamond FX, et al. (September 2019). "4F-MDMB-BINACA: A New Synthetic Cannabinoid Widely Implicated in Forensic Casework". Journal of Forensic Sciences. 64 (5): 1451–1461. doi:10.1111/1556-4029.14101. PMID31260580. S2CID195770459.
^Haschimi B, Mogler L, Halter S, Giorgetti A, Schwarze B, Westphal F, et al. (September 2019). "Detection of the recently emerged synthetic cannabinoid 4F-MDMB-BINACA in "legal high" products and human urine specimens". Drug Testing and Analysis. 11 (9): 1377–1386. doi:10.1002/dta.2666. PMID31228224. S2CID195260495.
^Nakajima JI, Takahashi M, Uemura N, Seto T, Fukaya H, Suzuki J, et al. (November 2014). "Identification of N,N-bis(1-pentylindol-3-yl-carboxy)naphthylamine (BiPICANA) found in an herbal blend product in the Tokyo metropolitan area and its cannabimimetic effects evaluated by in vitro [35S]GTPγS binding assays". Forensic Toxicology. 33: 84–92. doi:10.1007/s11419-014-0253-6. S2CID25165289.
^Pulver B, Schönberger T, Weigel D, Köck M, Eschenlohr Y, Lucas T, et al. (August 2022). "Structure elucidation of the novel synthetic cannabinoid Cumyl-Tosyl-Indazole-3-Carboxamide (Cumyl-TsINACA) found in illicit products in Germany". Drug Testing and Analysis. 14 (8): 1387–1406. doi:10.1002/dta.3261. PMID35338591. S2CID247713676.
^Banister SD, Moir M, Stuart J, Kevin RC, Wood KE, Longworth M, et al. (September 2015). "Pharmacology of Indole and Indazole Synthetic Cannabinoid Designer Drugs AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, and 5F-ADBICA". ACS Chemical Neuroscience. 6 (9): 1546–1559. doi:10.1021/acschemneuro.5b00112. PMID26134475.
^Abushareeda W, Fragkaki A, Vonaparti A, Angelis Y, Tsivou M, Saad K, et al. (March 2014). "Advances in the detection of designer steroids in anti-doping". Bioanalysis. 6 (6): 881–896. doi:10.4155/bio.14.9. PMID24702116.
^Takayama K, Noguchi Y, Aoki S, Takayama S, Yoshida M, Asari T, et al. (February 2015). "Identification of the minimum peptide from mouse myostatin prodomain for human myostatin inhibition". Journal of Medicinal Chemistry. 58 (3): 1544–1549. doi:10.1021/jm501170d. PMID25569186.
^ abcdefgMalenka RC, Nestler EJ, Hyman SE, Holtzman DM (2015). "14: Higher Cognitive Function and Behavioral Control". Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (3 ed.). New York: McGraw-Hill Medical. ISBN9780071827706.
^Battleday RM, Brem AK (November 2015). "Modafinil for cognitive neuroenhancement in healthy non-sleep-deprived subjects: A systematic review". European Neuropsychopharmacology. 25 (11): 1865–1881. doi:10.1016/j.euroneuro.2015.07.028. PMID26381811. S2CID23319688.
^Malenka RC, Nestler EJ, Hyman SE (2009). Sydor A, Brown RY (eds.). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2 ed.). New York: McGraw-Hill Medical. p. 454. ISBN9780071481274.
^Gualtieri F, Manetti D, Romanelli MN, Ghelardini C (2002). "Design and study of piracetam-like nootropics, controversial members of the problematic class of cognition-enhancing drugs". Current Pharmaceutical Design. 8 (2): 125–138. doi:10.2174/1381612023396582. PMID11812254.
^John Gridley (30 August 2010). "FDA Warning Letter: Unlimited Nutrition". Office of Compliance, Center for Food Safety and Applied Nutrition, Inspections, Compliance, Enforcement, and Criminal Investigations, US Food and Drug Administration. Archived from the original on 12 January 2017. Retrieved 5 April 2016.
^Franco-Maside A, Caamaño J, Gómez MJ, Cacabelos R (October 1994). "Brain mapping activity and mental performance after chronic treatment with CDP-choline in Alzheimer's disease". Methods and Findings in Experimental and Clinical Pharmacology. 16 (8): 597–607. PMID7760585.
^Webb M, Copes H, Hendricks PS (August 2019). "Narrative identity, rationality, and microdosing classic psychedelics". The International Journal on Drug Policy. 70: 33–39. doi:10.1016/j.drugpo.2019.04.013. PMID31071597. S2CID149445841.