Common side effects include indigestion, trouble sleeping, sexual dysfunction, loss of appetite, nausea, diarrhea, dry mouth, and rash. Serious side effects include serotonin syndrome, mania, seizures, an increased risk of suicidal behavior in people under 25 years old, and an increased risk of bleeding.[2]Antidepressant discontinuation syndrome is less likely to occur with fluoxetine than with other antidepressants, but it still happens in many cases. Fluoxetine taken during pregnancy is associated with significant increase in congenital heart defects in the newborns.[12][13] It has been suggested that fluoxetine therapy may be continued during breastfeeding if it was used during pregnancy or if other antidepressants were ineffective.[14]
Fluoxetine is approved for the treatment of major depression in children and adults.[7] Meta-analysis of trials in adults conclude that fluoxetine modestly outperforms placebo.[35] Fluoxetine may be less effective than other antidepressants, but has high acceptability.[36]
For children and adolescents with moderate-to-severe depressive disorder, fluoxetine seems to be the best treatment (either with or without cognitive behavioural therapy, although fluoxetine alone does not appear to be superior to CBT alone) but more research is needed to be certain, as effect sizes are small and the existing evidence is of dubious quality.[37][38][39][40] A 2022 systematic review and trial restoration of the two original blinded-control trials used to approve the use of fluoxetine in children and adolescents with depression found that both of the trials were severely flawed, and therefore did not demonstrate the safety or efficacy of the medication.[41]
The efficacy of fluoxetine in the treatment of panic disorder was demonstrated in two 12-week randomized multicenter phase III clinical trials that enrolled patients diagnosed with panic disorder, with or without agoraphobia. In the first trial, 42% of subjects in the fluoxetine-treated arm were free of panic attacks at the end of the study, vs. 28% in the placebo arm. In the second trial, 62% of fluoxetine treated patients were free of panic attacks at the end of the study, vs. 44% in the placebo arm.[7]
Bulimia nervosa
A 2011 systematic review discussed seven trials which compared fluoxetine to a placebo in the treatment of bulimia nervosa, six of which found a statistically significant reduction in symptoms such as vomiting and binge eating.[46] However, no difference was observed between treatment arms when fluoxetine and psychotherapy were compared to psychotherapy alone.
Fluoxetine is considered a first-line medication for the treatment of impulsive aggression of low intensity.[52] Fluoxetine reduced low intensity aggressive behavior in patients in intermittent aggressive disorder and borderline personality disorder.[52][53][54] Fluoxetine also reduced acts of domestic violence in alcoholics with a history of such behavior.[55]
Obesity and overweight adults
In 2019 a systematic review compared the effects on weight of various doses of fluoxetine (60 mg/d, 40 mg/d, 20 mg/d, 10 mg/d) in obese and overweight adults.[56] When compared to placebo, all dosages of fluoxetine appeared to contribute to weight loss but lead to increased risk of experiencing side effects, such as dizziness, drowsiness, fatigue, insomnia and nausea, during period of treatment. However, these conclusions were from low certainty evidence.[56] When comparing, in the same review, the effects of fluoxetine on weight of obese and overweight adults, to other anti-obesity agents, omega-3 gel capsule and not receiving a treatment, the authors could not reach conclusive results due to poor quality of evidence.[56]
Special populations
In children and adolescents, fluoxetine is the antidepressant of choice due to tentative evidence favoring its efficacy and tolerability.[57][58] Evidence supporting an increased risk of major fetal malformations resulting from fluoxetine exposure is limited, although the Medicines and Healthcare products Regulatory Agency (MHRA) of the United Kingdom has warned prescribers and patients of the potential for fluoxetine exposure in the first trimester (during organogenesis, formation of the fetal organs) to cause a slight increase in the risk of congenital cardiac malformations in the newborn.[59][60][61] Furthermore, an association between fluoxetine use during the first trimester and an increased risk of minor fetal malformations was observed in one study.[60]
However, a systematic review and meta-analysis of 21 studies – published in the Journal of Obstetrics and Gynaecology Canada – concluded, "the apparent increased risk of fetal cardiac malformations associated with maternal use of fluoxetine has recently been shown also in depressed women who deferred SSRI therapy in pregnancy, and therefore most probably reflects an ascertainment bias. Overall, women who are treated with fluoxetine during the first trimester of pregnancy do not appear to have an increased risk of major fetal malformations."[62]
Per the FDA, infants exposed to SSRIs in late pregnancy may have an increased risk for persistent pulmonary hypertension of the newborn. Limited data support this risk, but the FDA recommends physicians consider tapering SSRIs such as fluoxetine during the third trimester.[7] A 2009 review recommended against fluoxetine as a first-line SSRI during lactation, stating, "Fluoxetine should be viewed as a less-preferred SSRI for breastfeeding mothers, particularly with newborn infants, and in those mothers who consumed fluoxetine during gestation."[63]Sertraline is often the preferred SSRI during pregnancy due to the relatively minimal fetal exposure observed and its safety profile while breastfeeding.[64]
Adverse effects
Side effects observed in fluoxetine-treated persons in clinical trials with an incidence >5% and at least twice as common in fluoxetine-treated persons compared to those who received a placebo pill include abnormal dreams, abnormal ejaculation, anorexia, anxiety, asthenia, diarrhea, dizziness, dry mouth, dyspepsia, fatigue, flu syndrome, impotence, insomnia, decreased libido, nausea, nervousness, pharyngitis, rash, sinusitis, somnolence, sweating, tremor, vasodilation, and yawning.[56][65] Fluoxetine is considered the most stimulating of the SSRIs (that is, it is most prone to causing insomnia and agitation).[66] It also appears to be the most prone of the SSRIs for producing dermatologic reactions (e.g. urticaria (hives), rash, itchiness, etc.).[60]
Sexual dysfunction, including loss of libido, erectile dysfunction, lack of vaginal lubrication, and anorgasmia, are some of the most commonly encountered adverse effects of treatment with fluoxetine and other SSRIs. While early clinical trials suggested a relatively low rate of sexual dysfunction, more recent studies in which the investigator actively inquires about sexual problems suggest that the incidence is >70%.[67]
In 2019, the Pharmacovigilance Risk Assessment Committee of the European Medicines Agency recommended that packaging leaflets of selected SSRIs and SNRIs should be amended to include information regarding a possible risk of persistent sexual dysfunction.[68] Following on the European assessment, a safety review by Health Canada "could neither confirm nor rule out a causal link... which was long lasting in rare cases", but recommended that "healthcare professionals inform patients about the potential risk of long-lasting sexual dysfunction despite discontinuation of treatment".[69]
Antidepressant discontinuation syndrome
Fluoxetine's longer half-life makes it less common to develop antidepressant discontinuation syndrome following cessation of therapy, especially when compared with antidepressants with shorter half-lives such as paroxetine.[70][71] Although gradual dose reductions are recommended with antidepressants with shorter half-lives, tapering may not be necessary with fluoxetine.[72]
Pregnancy
Antidepressant exposure (including fluoxetine) is associated with shorter average duration of pregnancy (by three days), increased risk of preterm delivery (by 55%), lower birth weight (by 75 g), and lower Apgar scores (by <0.4 points).[73][74] There is 30–36% increase in congenital heart defects among children whose mothers were prescribed fluoxetine during pregnancy,[12][13] with fluoxetine use in the first trimester associated with 38–65% increase in septal heart defects.[75][12]
Suicide
This section needs to be updated. Please help update this article to reflect recent events or newly available information. (March 2022)
In October 2004, the FDA added a black box warning to all antidepressant drugs regarding use in children.[76] In 2006, the FDA included adults aged 25 or younger.[77] Statistical analyses conducted by two independent groups of FDA experts found a 2-fold increase of the suicidal ideation and behavior in children and adolescents, and 1.5-fold increase of suicidality in the 18–24 age group. The suicidality was slightly decreased for those older than 24, and statistically significantly lower in the 65 and older group.[78][79][80] This analysis was criticized by Donald Klein, who noted that suicidality, that is suicidal ideation and behavior, is not necessarily a good surrogate marker for suicide, and it is still possible, while unproven, that antidepressants may prevent actual suicide while increasing suicidality.[81] In February 2018, the Food and Drug Administration (FDA) ordered an update to the warnings based on statistical evidence from twenty four trials in which the risk of such events increased from two percent to four percent relative to the placebo trials.[82]
On 14 September 1989, Joseph T. Wesbecker killed eight people and injured twelve before committing suicide.[83] His relatives and victims blamed his actions on the Prozac medication he had begun taking a month prior. The incident set off a chain of lawsuits and public outcries.[84] Lawyers began using Prozac to justify the abnormal behaviors of their clients.[85]Eli Lilly was accused of not doing enough to warn patients and doctors about the adverse effects, which it had described as "activation", years prior to the incident.[86]
There is less data on fluoxetine than on antidepressants as a whole. In 2004, the FDA had to combine the results of 295 trials of 11 antidepressants for psychiatric indications to obtain statistically significant results. Considered separately, fluoxetine use in children increased the odds of suicidality by 50%,[87] and in adults decreased the odds of suicidality by approximately 30%.[79][80] A study published in May 2009 found that fluoxetine was more likely to increase overall suicidal behavior. 14.7% of the patients (n = 44) on fluoxetine had suicidal events, compared to 6.3% in the psychotherapy group and 8.4% from the combined treatment group.[88] Similarly, the analysis conducted by the UK MHRA found a 50% increase in suicide-related events, not reaching statistical significance, in the children and adolescents on fluoxetine as compared to the ones on placebo. According to the MHRA data, fluoxetine did not change the rate of self-harm in adults and statistically significantly decreased suicidal ideation by 50%.[89][90]
QT prolongation
Fluoxetine can affect the electrical currents that heart muscle cells use to coordinate their contraction, specifically the potassium currents Ito and IKs that repolarise the cardiac action potential.[91] Under certain circumstances, this can lead to prolongation of the QT interval, a measurement made on an electrocardiogram reflecting how long it takes for the heart to electrically recharge after each heartbeat. When fluoxetine is taken alongside other drugs that prolong the QT interval, or by those with a susceptibility to long QT syndrome, there is a small risk of potentially lethal abnormal heart rhythms such as torsades de pointes.[92] A study completed in 2011 found that fluoxetine does not alter the QT interval and has no clinically meaningful effects on the cardiac action potential.[93]
Contraindications include prior treatment (within the past 5–6 weeks, depending on the dose)[95][96] with MAOIs such as phenelzine and tranylcypromine, due to the potential for serotonin syndrome.[9] Its use should also be avoided in those with known hypersensitivities to fluoxetine or any of the other ingredients in the formulation used.[9] Its use in those concurrently receiving pimozide or thioridazine is also advised against.[9]
In case of short term administration of codeine for pain management, it is advised to monitor and adjust dosage. Codeine might not provide sufficient analgesia when fluoxetine is co-administered.[97] If opioid treatment is required, oxycodone use should be monitored since oxycodone is metabolized by the cytochrome P450 (CYP) enzyme system and fluoxetine and paroxetine are potent inhibitors of CYP2D6 enzymes.[98] This means combinations of codeine or oxycodone with fluoxetine antidepressant may lead to reduced analgesia.[99]
In some cases, use of dextromethorphan-containing cold and cough medications with fluoxetine is advised against, due to fluoxetine increasing serotonin levels, as well as the fact that fluoxetine is a cytochrome P450 2D6 inhibitor, which causes dextromethorphan to not be metabolized at a normal rate, thus increasing the risk of serotonin syndrome and other potential side effects of dextromethorphan.[100]
Fluoxetine and norfluoxetineinhibit many isozymes of the cytochrome P450 system that are involved in drug metabolism. Both are potent inhibitors of CYP2D6 (which is also the chief enzyme responsible for their metabolism) and CYP2C19, and mild to moderate inhibitors of CYP2B6 and CYP2C9.[103][104]In vivo, fluoxetine and norfluoxetine do not significantly affect the activity of CYP1A2 and CYP3A4.[103] They also inhibit the activity of P-glycoprotein, a type of membrane transport protein that plays an important role in drug transport and metabolism and hence P-glycoprotein substrates, such as loperamide, may have their central effects potentiated.[105] This extensive effect on the body's pathways for drug metabolism creates the potential for interactions with many commonly used drugs.[105][106]
Fluoxetine may also increase the risk of opioid overdose in some instances, in part due to its inhibitory effect on cytochrome P-450.[108][109] Similar to how fluoxetine can effect the metabolization of dextromethorphan, it may cause medications like oxycodone to not be metabolized at a normal rate, thus increasing the risk of serotonin syndrome as well as resulting in an increased concentration of oxycodone in the blood, which may lead to accidental overdose.
A 2022 study which examined the health insurance claims of over 2 million Americans who began taking oxycodone while using SSRIs between 2000 and 2020, found that patients taking paroxetine or fluoxetine had a 23% higher risk of overdosing on oxycodone than those using other SSRIs.[108]
There is also the potential for interaction with highly protein-bound drugs due to the potential for fluoxetine to displace said drugs from the plasma or vice versa hence increasing serum concentrations of either fluoxetine or the offending agent.[9]
Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) and does not appreciably inhibit norepinephrine and dopamine reuptake at therapeutic doses. It does, however, delay the reuptake of serotonin, resulting in serotonin persisting longer when it is released. Large doses in rats have been shown to induce a significant increase in synaptic norepinephrine and dopamine.[112][113][114][115] Thus, dopamine and norepinephrine may contribute to the antidepressant action of fluoxetine in humans at supratherapeutic doses (60–80 mg).[114][116] This effect may be mediated by 5HT2C receptors, which are inhibited by higher concentrations of fluoxetine.[117]
While it is unclear how fluoxetine exerts its effect on mood, it has been suggested that fluoxetine elicits antidepressant effect by inhibiting serotonin reuptake in the synapse by binding to the reuptake pump on the neuronal membrane[126] to increase serotonin availability and enhance neurotransmission.[127] Over time, this leads to a downregulation of pre-synaptic 5-HT1A receptors, which is associated with an improvement in passive stress tolerance, and delayed downstream increase in expression of brain-derived neurotrophic factor, which may contribute to a reduction in negative affective biases.[128][129] Norfluoxetine and desmethylfluoxetine are metabolites of fluoxetine and also act as serotonin reuptake inhibitors, increasing the duration of action of the drug.[130][126]
Prolonged exposure to fluoxetine changes the expression of genes involved in myelination, a process that shapes brain connectivity and contributes to symptoms of psychiatric disorders. The regulation of genes involved with myelination is partially responsible for the long-term therapeutic benefits of chronic SSRI exposure.[131]
Pharmacokinetics
The bioavailability of fluoxetine is relatively high (72%), and peak plasma concentrations are reached in 6–8 hours. It is highly bound to plasma proteins, mostly albumin and α1-glycoprotein.[9] Fluoxetine is metabolized in the liver by isoenzymes of the cytochrome P450 system, including CYP2D6.[132] The role of CYP2D6 in the metabolism of fluoxetine may be clinically important, as there is great genetic variability in the function of this enzyme among people. CYP2D6 is responsible for converting fluoxetine to its only active metabolite, norfluoxetine.[133] Both drugs are also potent inhibitors of CYP2D6.[134]
The extremely slow elimination of fluoxetine and its active metabolite norfluoxetine from the body distinguishes it from other antidepressants. With time, fluoxetine and norfluoxetine inhibit their own metabolism, so fluoxetine elimination half-life increases from 1 to 3 days, after a single dose, to 4 to 6 days, after long-term use.[9] Similarly, the half-life of norfluoxetine is longer (16 days) after long-term use.[132][135][136] Therefore, the concentration of the drug and its active metabolite in the blood continues to grow through the first few weeks of treatment, and their steady concentration in the blood is achieved only after four weeks.[137][138] Moreover, the brain concentration of fluoxetine and its metabolites keeps increasing through at least the first five weeks of treatment.[139] For major depressive disorder, while onset of antidepressant action may be felt as early as 1–2 weeks,[140] the full benefit of the current dose a patient receives is not realized for at least a month following ingestion. For example, in one 6-week study, the median time to achieving consistent response was 29 days.[137] Likewise, complete excretion of the drug may take several weeks. During the first week after treatment discontinuation, the brain concentration of fluoxetine decreases by only 50%,[139] The blood level of norfluoxetine four weeks after treatment discontinuation is about 80% of the level registered by the end of the first treatment week, and, seven weeks after discontinuation, norfluoxetine is still detectable in the blood.[135]
Measurement in body fluids
Fluoxetine and norfluoxetine may be quantitated in blood, plasma or serum to monitor therapy, confirm a diagnosis of poisoning in hospitalized person or assist in a medicolegal death investigation. Blood or plasma fluoxetine concentrations are usually in a range of 50–500 μg/L in persons taking the drug for its antidepressant effects, 900–3000 μg/L in survivors of acute overdosage and 1000–7000 μg/L in victims of fatal overdosage. Norfluoxetine concentrations are approximately equal to those of the parent drug during chronic therapy, but may be substantially less following acute overdosage, since it requires at least 1–2 weeks for the metabolite to achieve equilibrium.[141][142][143]
History
The work which eventually led to the discovery of fluoxetine began at Eli Lilly and Company in 1970 as a collaboration between Bryan Molloy and Ray Fuller.[144] It was known at that time that the antihistaminediphenhydramine showed some antidepressant-like properties. 3-Phenoxy-3-phenylpropylamine, a compound structurally similar to diphenhydramine, was taken as a starting point. Molloy and fellow Eli Lilly chemist Klaus Schmiegel synthesized a series of dozens of its derivatives.[145][146] Hoping to find a derivative inhibiting only serotonin reuptake, another Eli Lilly scientist, David T. Wong, proposed to retest the series for the in vitro reuptake of serotonin, norepinephrine and dopamine, using a technique developed by neuroscientist Solomon Snyder.[144] This test showed the compound later named fluoxetine to be the most potent and selective inhibitor of serotonin reuptake of the series.[147] The first article about fluoxetine was published in 1974,[147] following talks given at FASEB and ASPET.[148] A year later, it was given the official chemical name fluoxetine and the Eli Lilly and Company gave it the brand name Prozac. In February 1977, Dista Products Company, a division of Eli Lilly & Company, filed an Investigational New Drug application to the U.S. Food and Drug Administration (FDA) for fluoxetine.[149]
Fluoxetine appeared on the Belgian market in 1986.[150] In the U.S., the FDA gave its final approval in December 1987,[151] and a month later Eli Lilly began marketing Prozac; annual sales in the U.S. reached $350 million within a year.[149] Worldwide sales eventually reached a peak of $2.6 billion a year.[152]
Lilly tried several product line extension strategies, including extended release formulations and paying for clinical trials to test the efficacy and safety of fluoxetine in premenstrual dysphoric disorder and rebranding fluoxetine for that indication as "Sarafem" after it was approved by the FDA in 2000, following the recommendation of an advisory committee in 1999.[153][154][155] The invention of using fluoxetine to treat PMDD was made by Richard Wurtman at MIT; the patent was licensed to his startup, Interneuron, which in turn sold it to Lilly.[156]
To defend its Prozac revenue from generic competition, Lilly also fought a five-year, multimillion-dollar battle in court with the generic company Barr Pharmaceuticals to protect its patents on fluoxetine, and lost the cases for its line-extension patents, other than those for Sarafem, opening fluoxetine to generic manufacturers starting in 2001.[157] When Lilly's patent expired in August 2001,[158]generic drug competition decreased Lilly's sales of fluoxetine by 70% within two months.[153]
In 2000 an investment bank had projected that annual sales of Sarafem could reach $250M/year.[159] Sales of Sarafem reached about $85M/year in 2002, and in that year Lilly sold its assets connected with the drug for $295M to Galen Holdings, a small Irish pharmaceutical company specializing in dermatology and women's health that had a sales force tasked to gynecologists' offices; analysts found the deal sensible since the annual sales of Sarafem made a material financial difference to Galen, but not to Lilly.[160][161]
Bringing Sarafem to market harmed Lilly's reputation in some quarters. The diagnostic category of PMDD was controversial since it was first proposed in 1987, and Lilly's role in retaining it in the appendix of the DSM-IV-TR, the discussions for which got under way in 1998, has been criticized.[159] Lilly was criticized for inventing a disease in order to make money,[159] and for not innovating but rather just seeking ways to continue making money from existing drugs.[162] It was also criticized by the FDA and groups concerned with women's health for marketing Sarafem too aggressively when it was first launched; the campaign included a television commercial featuring a harried woman at the grocery store who asks herself if she has PMDD.[163]
Society and culture
Prescription trends
In 2010, over 24.4 million prescriptions for generic fluoxetine were filled in the United States,[164] making it the third-most prescribed antidepressant after sertraline and citalopram.[164]
In 2011, 6 million prescriptions for fluoxetine were filled in the United Kingdom.[165] Between 1998 and 2017, along with amitriptyline, it was the most commonly prescribed first antidepressant for adolescents aged 12–17 years in England.[166]
Environmental effects
Fluoxetine has been detected in aquatic ecosystems, especially in North America.[167] There is a growing body of research addressing the effects of fluoxetine (among other SSRIs) exposure on non-target aquatic species.[168][169][170][171]
In 2003, one of the first studies addressed in detail the potential effects of fluoxetine on aquatic wildlife; this research concluded that exposure at environmental concentrations was of little risk to aquatic systems if a hazard quotient approach was applied to risk assessment.[170] However, they also stated the need for further research addressing sub-lethal consequences of fluoxetine, specifically focusing on study species' sensitivity, behavioural responses, and endpoints modulated by the serotonin system.[170]
Since 2003, a number of studies have reported fluoxetine-induced impacts on a number of behavioural and physiological endpoints, inducing antipredator behaviour,[173][174][175] reproduction,[176][177] and foraging[178][179] at or below field-detected concentrations. However, a 2014 review on the ecotoxicology of fluoxetine concluded that, at that time, a consensus on the ability of environmentally realistic dosages to affect the behaviour of wildlife could not be reached.[169] At environmentally realistic concentrations, fluoxetine alters insect emergence timing.[180] Richmond et al., 2019 find that at low concentrations it accelerates emergence of Diptera, while at unusually high concentrations it has no discernable effect.[180]
Several common plants are known to absorb fluoxetine.[181] Several crops have been tested, and Redshaw et al. 2008 find that cauliflower absorbs large amounts into the stem and leaf but not the head or root.[181] Wu et al. 2012 find that lettuce and spinach also absorb detectable amounts, while Carter et al. 2014 find that radish (Raphanus sativus), ryegrass (Lolium perenne) – and Wu et al. 2010 find that soybean (Glycine max) – absorb little.[181] Wu tested all tissues of soybean and all showed only low concentrations.[181] By contrast various Reinhold et al. 2010 find duckweeds have a high uptake of fluoxetine and show promise for bioremediation of contaminated water, especially Lemna minor and Landoltia punctata.[181] Ecotoxicity for organisms involved in aquaculture is well documented.[182]: 275–276 Fluoxetine affects both aquacultured invertebrates and vertebrates, and inhibits soil microbes including a large antibacterial effect.[182] For applications of this see § Other uses.
Politics
During the 1990 campaign for governor of Florida, it was disclosed that one of the candidates, Lawton Chiles, had depression and had resumed taking fluoxetine, leading his political opponents to question his fitness to serve as governor.[183]
American aircraft pilots
Beginning in April 2010, fluoxetine became one of four antidepressant drugs that the FAA permitted for pilots with authorization from an aviation medical examiner. The other permitted antidepressants are sertraline (Zoloft), citalopram (Celexa), and escitalopram (Lexapro).[184] These four remain the only antidepressants permitted by FAA as of 2 December 2016.[ref][185]
Sertraline, citalopram, and escitalopram are the only antidepressants permitted for EASA medical certification, as of January 2019.[186][187]
^World Health Organization (2021). World Health Organization model list of essential medicines: 22nd list (2021). Geneva: World Health Organization. hdl:10665/345533. WHO/MHP/HPS/EML/2021.02.
^Truven Health Analytics, Inc. DrugPoint® System (Internet) [cited 2013 Oct 4]. Greenwood Village, CO: Thomsen Healthcare; 2013.
^Australian Medicines Handbook 2013. The Australian Medicines Handbook Unit Trust; 2013.
^British National Formulary (BNF) 65. Pharmaceutical Pr; 2013.
^Husted DS, Shapira NA, Murphy TK, Mann GD, Ward HE, Goodman WK (2007). "Effect of comorbid tics on a clinically meaningful response to 8-week open-label trial of fluoxetine in obsessive compulsive disorder". Journal of Psychiatric Research. 41 (3–4): 332–337. doi:10.1016/j.jpsychires.2006.05.007. PMID16860338.
^"Fluoxetine Hydrochloride". The American Society of Health-System Pharmacists. Archived from the original on 11 April 2011. Retrieved 3 April 2011.
^"NIMH•Eating Disorders". The National Institute of Mental Health. National Institute of Health. 2011. Archived from the original on 19 August 2011. Retrieved 25 November 2013.
^Williams K, Brignell A, Randall M, Silove N, Hazell P (August 2013). "Selective serotonin reuptake inhibitors (SSRIs) for autism spectrum disorders (ASD)". The Cochrane Database of Systematic Reviews. 8 (8): CD004677. doi:10.1002/14651858.CD004677.pub3. PMID23959778.
^Doyle CA, McDougle CJ (August 2012). "Pharmacotherapy to control behavioral symptoms in children with autism". Expert Opinion on Pharmacotherapy. 13 (11): 1615–1629. doi:10.1517/14656566.2012.674110. PMID22550944. S2CID32144885.
^Magni LR, Purgato M, Gastaldon C, Papola D, Furukawa TA, Cipriani A, et al. (July 2013). "Fluoxetine versus other types of pharmacotherapy for depression". The Cochrane Database of Systematic Reviews. 2013 (7): CD004185. doi:10.1002/14651858.CD004185.pub3. PMID24353997.
^Gøtzsche PC, Healy D (November 2022). "Restoring the two pivotal fluoxetine trials in children and adolescents with depression". The International Journal of Risk & Safety in Medicine (Systematic review). 33 (4): 385–408. doi:10.3233/JRS-210034. PMID35786661. S2CID250241461.
^Carr RR, Ensom MH (April 2002). "Fluoxetine in the treatment of premenstrual dysphoric disorder". The Annals of Pharmacotherapy. 36 (4): 713–7. doi:10.1345/aph.1A265. PMID11918525. S2CID37088388.
^Romano S, Judge R, Dillon J, Shuler C, Sundell K (April 1999). "The role of fluoxetine in the treatment of premenstrual dysphoric disorder". Clinical Therapeutics. 21 (4): 615–33, discussion 613. doi:10.1016/S0149-2918(00)88315-0. PMID10363729.
^Pearlstein T, Yonkers KA (July 2002). "Review of fluoxetine and its clinical applications in premenstrual dysphoric disorder". Expert Opinion on Pharmacotherapy. 3 (7): 979–91. doi:10.1517/14656566.3.7.979. PMID12083997. S2CID9455962.
^Cohen LS, Miner C, Brown EW, Freeman E, Halbreich U, Sundell K, et al. (September 2002). "Premenstrual daily fluoxetine for premenstrual dysphoric disorder: a placebo-controlled, clinical trial using computerized diaries". Obstetrics and Gynecology. 100 (3): 435–44. doi:10.1016/S0029-7844(02)02166-X. PMID12220761. S2CID753100.
^ abFelthous A, Stanford M (2021). "34.The Pharmacotherapy of Impulsive Aggression in Psychopathic Disorders". In Felthous A, Sass H (eds.). The Wiley International Handbook on Psychopathic Disorders and the Law (2nd ed.). Wiley. pp. 810–13. ISBN978-1-119-15932-2.
^Coccaro EF, Lee RJ, Kavoussi RJ (April 2009). "A double-blind, randomized, placebo-controlled trial of fluoxetine in patients with intermittent explosive disorder". The Journal of Clinical Psychiatry. 70 (5): 653–62. doi:10.4088/JCP.08m04150. PMID19389333.
^Coccaro EF, Kavoussi RJ (December 1997). "Fluoxetine and impulsive aggressive behavior in personality-disordered subjects". Archives of General Psychiatry. 54 (12): 1081–8. doi:10.1001/archpsyc.1997.01830240035005. PMID9400343.
^Taurines R, Gerlach M, Warnke A, Thome J, Wewetzer C (September 2011). "Pharmacotherapy in depressed children and adolescents". The World Journal of Biological Psychiatry. 12 (Suppl 1): 11–5. doi:10.3109/15622975.2011.600295. PMID21905988. S2CID18186328.
^Cohen D (2007). "Should the use of selective serotonin reuptake inhibitors in child and adolescent depression be banned?". Psychotherapy and Psychosomatics. 76 (1): 5–14. doi:10.1159/000096360. PMID17170559. S2CID1112192.
^Morrison JL, Riggs KW, Rurak DW (March 2005). "Fluoxetine during pregnancy: impact on fetal development". Reproduction, Fertility, and Development. 17 (6): 641–50. doi:10.1071/RD05030. PMID16263070.
^ abcBrayfield A, ed. (13 August 2013). "Fluoxetine Hydrochloride". Martindale: The Complete Drug Reference. London, UK: Pharmaceutical Press. Retrieved 24 November 2013.(subscription required)
^Kendall-Tackett K, Hale TW (May 2010). "The use of antidepressants in pregnant and breastfeeding women: a review of recent studies". Journal of Human Lactation. 26 (2): 187–95. doi:10.1177/0890334409342071. PMID19652194. S2CID29112093.
^Taylor D, Paton C, Shitij K (2012). The Maudsley prescribing guidelines in psychiatry. West Sussex: Wiley-Blackwell. ISBN978-0-470-97948-8.
^Bland RD, Clarke TL, Harden LB (February 1976). "Rapid infusion of sodium bicarbonate and albumin into high-risk premature infants soon after birth: a controlled, prospective trial". American Journal of Obstetrics and Gynecology. 124 (3): 263–7. doi:10.1016/0002-9378(76)90154-x. PMID2013.
^Koda-Kimble MA, Alldredge BK (2012). Applied therapeutics: the clinical use of drugs (10th ed.). Baltimore: Wolters Kluwer Health/Lippincott Williams & Wilkins. ISBN978-1-60913-713-7.
^Clark MS, Jansen K, Bresnahan M (November 2013). "Clinical inquiry: How do antidepressants affect sexual function?". The Journal of Family Practice. 62 (11): 660–1. PMID24288712.
^Lattimore KA, Donn SM, Kaciroti N, Kemper AR, Neal CR, Vazquez DM (September 2005). "Selective serotonin reuptake inhibitor (SSRI) use during pregnancy and effects on the fetus and newborn: a meta-analysis". Journal of Perinatology. 25 (9): 595–604. doi:10.1038/sj.jp.7211352. PMID16015372. S2CID5558834.
^Klein DF (April 2006). "The flawed basis for FDA post-marketing safety decisions: the example of anti-depressants and children". Neuropsychopharmacology. 31 (4): 689–699. doi:10.1038/sj.npp.1300996. PMID16395296. S2CID12599251.
^"Fluoxetine". PubChem. U.S. National Library of Medicine. Retrieved 13 March 2015.
^Gury C, Cousin F (September 1999). "[Pharmacokinetics of SSRI antidepressants: half-life and clinical applicability]". L'Encéphale. 25 (5): 470–6. PMID10598311.
^Janicak PG, Marder SR, Pavuluri MN (26 December 2011). Principles and Practice of Psychopharmacotherapy. Lippincott Williams & Wilkins. ISBN978-1-4511-7877-7. A 2-week interval is adequate for all of these drugs, with the exception of fluoxetine. Because of the extended half-life of norfluoxetine, a minimum of 5 weeks should lapse between stopping fluoxetine (20mg/day) and starting an MAOI. With higher daily doses, the interval should be longer.
^Dean L, Kane M (2012). "Codeine Therapy and CYP2D6 Genotype". In Pratt VM, Scott SA, Pirmohamed M, Esquivel B (eds.). Medical Genetics Summaries. Bethesda (MD): National Center for Biotechnology Information (US). PMID28520350. Retrieved 1 October 2022.
^Boyer EW, Shannon M (March 2005). "The serotonin syndrome". The New England Journal of Medicine. 352 (11): 1112–1120. doi:10.1056/NEJMra041867. PMID15784664.
^Hemeryck A, Belpaire F (2002). "Selective Serotonin Reuptake Inhibitors and Cytochrome P-450 Mediated Drug-Drug Interactions: An Update". Current Drug Metabolism. 3 (1): 13–37. doi:10.2174/1389200023338017. PMID11876575.
^Roth BL, Driscol J (12 January 2011). "PDSP Ki Database". Psychoactive Drug Screening Program (PDSP). University of North Carolina at Chapel Hill and the United States National Institute of Mental Health. Archived from the original on 8 November 2013. Retrieved 24 June 2013.
^Owens MJ, Knight DL, Nemeroff CB (September 2001). "Second-generation SSRIs: human monoamine transporter binding profile of escitalopram and R-fluoxetine". Biological Psychiatry. 50 (5): 345–50. doi:10.1016/s0006-3223(01)01145-3. PMID11543737. S2CID11247427.
^Perry KW, Fuller RW (1997). "Fluoxetine increases norepinephrine release in rat hypothalamus as measured by tissue levels of MHPG-SO4 and microdialysis in conscious rats". Journal of Neural Transmission. 104 (8–9): 953–66. doi:10.1007/BF01285563. PMID9451727. S2CID2679296.
^Bymaster FP, Zhang W, Carter PA, Shaw J, Chernet E, Phebus L, et al. (April 2002). "Fluoxetine, but not other selective serotonin uptake inhibitors, increases norepinephrine and dopamine extracellular levels in prefrontal cortex". Psychopharmacology. 160 (4): 353–61. doi:10.1007/s00213-001-0986-x. PMID11919662. S2CID27296534.
^Miguelez C, Fernandez-Aedo I, Torrecilla M, Grandoso L, Ugedo L (2009). "alpha(2)-Adrenoceptors mediate the acute inhibitory effect of fluoxetine on locus coeruleus noradrenergic neurons". Neuropharmacology. 56 (6–7): 1068–73. doi:10.1016/j.neuropharm.2009.03.004. PMID19298831. S2CID7485264.
^Pälvimäki EP, Roth BL, Majasuo H, Laakso A, Kuoppamäki M, Syvälahti E, et al. (August 1996). "Interactions of selective serotonin reuptake inhibitors with the serotonin 5-HT2c receptor". Psychopharmacology. 126 (3): 234–40. doi:10.1007/BF02246453. PMID8876023. S2CID24889381.
^Brunton PJ (June 2016). "Neuroactive steroids and stress axis regulation: Pregnancy and beyond". The Journal of Steroid Biochemistry and Molecular Biology. 160: 160–8. doi:10.1016/j.jsbmb.2015.08.003. PMID26259885. S2CID43499796.
^ abRobinson RT, Drafts BC, Fisher JL (March 2003). "Fluoxetine increases GABA(A) receptor activity through a novel modulatory site". The Journal of Pharmacology and Experimental Therapeutics. 304 (3): 978–84. doi:10.1124/jpet.102.044834. PMID12604672. S2CID16061756.
^Narita N, Hashimoto K, Tomitaka S, Minabe Y (June 1996). "Interactions of selective serotonin reuptake inhibitors with subtypes of sigma receptors in rat brain". European Journal of Pharmacology. 307 (1): 117–9. doi:10.1016/0014-2999(96)00254-3. PMID8831113.
^Hashimoto K (September 2009). "Sigma-1 receptors and selective serotonin reuptake inhibitors: clinical implications of their relationship". Central Nervous System Agents in Medicinal Chemistry. 9 (3): 197–204. doi:10.2174/1871524910909030197. PMID20021354.
^"Fluoxetine". IUPHAR Guide to Pharmacology. IUPHAR. Archived from the original on 10 November 2014. Retrieved 10 November 2014.
^Benfield P, Heel RC, Lewis SP (December 1986). "Fluoxetine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness". Drugs. 32 (6): 481–508. doi:10.2165/00003495-198632060-00002. PMID2878798.
^Mandrioli R, Forti GC, Raggi MA (February 2006). "Fluoxetine metabolism and pharmacological interactions: the role of cytochrome p450". Current Drug Metabolism. 7 (2): 127–33. doi:10.2174/138920006775541561. PMID16472103.
^Hiemke C, Härtter S (January 2000). "Pharmacokinetics of selective serotonin reuptake inhibitors". Pharmacology & Therapeutics. 85 (1): 11–28. doi:10.1016/S0163-7258(99)00048-0. PMID10674711.
^ abBurke WJ, Hendricks SE, McArthur-Miller D, Jacques D, Bessette D, McKillup T, et al. (August 2000). "Weekly dosing of fluoxetine for the continuation phase of treatment of major depression: results of a placebo-controlled, randomized clinical trial". Journal of Clinical Psychopharmacology. 20 (4): 423–7. doi:10.1097/00004714-200008000-00006. PMID10917403.
^ abPérez V, Puiigdemont D, Gilaberte I, Alvarez E, Artigas F, et al. (Grup de Recerca en Trastorns Afectius) (February 2001). "Augmentation of fluoxetine's antidepressant action by pindolol: analysis of clinical, pharmacokinetic, and methodologic factors". Journal of Clinical Psychopharmacology. 21 (1): 36–45. doi:10.1097/00004714-200102000-00008. hdl:10261/34714. PMID11199945. S2CID13542714.
^Brunswick DJ, Amsterdam JD, Fawcett J, Quitkin FM, Reimherr FW, Rosenbaum JF, et al. (April 2002). "Fluoxetine and norfluoxetine plasma concentrations during relapse-prevention treatment". Journal of Affective Disorders. 68 (2–3): 243–9. doi:10.1016/S0165-0327(00)00333-5. PMID12063152.
^Papakostas GI, Perlis RH, Scalia MJ, Petersen TJ, Fava M (February 2006). "A meta-analysis of early sustained response rates between antidepressants and placebo for the treatment of major depressive disorder". Journal of Clinical Psychopharmacology. 26 (1): 56–60. doi:10.1097/01.jcp.0000195042.62724.76. PMID16415707. S2CID42816815.
^Lemberger L, Bergstrom RF, Wolen RL, Farid NA, Enas GG, Aronoff GR (March 1985). "Fluoxetine: clinical pharmacology and physiologic disposition". The Journal of Clinical Psychiatry. 46 (3 Pt 2): 14–9. PMID3871765.
^Pato MT, Murphy DL, DeVane CL (June 1991). "Sustained plasma concentrations of fluoxetine and/or norfluoxetine four and eight weeks after fluoxetine discontinuation". Journal of Clinical Psychopharmacology. 11 (3): 224–5. doi:10.1097/00004714-199106000-00024. PMID1741813.
^Baselt R (2008). Disposition of Toxic Drugs and Chemicals in Man (8th ed.). Foster City, CA: Biomedical Publications. pp. 645–48.
^Wong DT, Bymaster FP, Engleman EA (1995). "Prozac (fluoxetine, Lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: twenty years since its first publication". Life Sciences. 57 (5): 411–41. doi:10.1016/0024-3205(95)00209-O. PMID7623609.
^Macnair P (September 2012). "BBC – Health: Prozac". BBC. Archived from the original on 11 December 2012. In 2011 over 43 million prescriptions for antidepressants were handed out in the UK and about 14 per cent (or nearly 6 million prescriptions) of these were for a drug called fluoxetine, better known as Prozac.
^ abcBrooks BW, Foran CM, Richards SM, Weston J, Turner PK, Stanley JK, et al. (May 2003). "Aquatic ecotoxicology of fluoxetine". Toxicology Letters. Hot Spot Pollutants: Pharmaceuticals in the Environment. 142 (3): 169–83. doi:10.1016/S0378-4274(03)00066-3. PMID12691711.
^Mennigen JA, Stroud P, Zamora JM, Moon TW, Trudeau VL (1 July 2011). "Pharmaceuticals as neuroendocrine disruptors: lessons learned from fish on Prozac". Journal of Toxicology and Environmental Health Part B: Critical Reviews. 14 (5–7): 387–412. Bibcode:2011JTEHB..14..387M. doi:10.1080/10937404.2011.578559. PMID21790318. S2CID43341257.
^Mennigen JA, Lado WE, Zamora JM, Duarte-Guterman P, Langlois VS, Metcalfe CD, et al. (November 2010). "Waterborne fluoxetine disrupts the reproductive axis in sexually mature male goldfish, Carassius auratus". Aquatic Toxicology. 100 (4): 354–64. Bibcode:2010AqTox.100..354M. doi:10.1016/j.aquatox.2010.08.016. PMID20864192.
^Schultz MM, Painter MM, Bartell SE, Logue A, Furlong ET, Werner SL, et al. (July 2011). "Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows". Aquatic Toxicology. 104 (1–2): 38–47. Bibcode:2011AqTox.104...38S. doi:10.1016/j.aquatox.2011.03.011. PMID21536011.
Qin Q, Chen X, Zhuang J (9 September 2014). "The Fate and Impact of Pharmaceuticals and Personal Care Products in Agricultural Soils Irrigated With Reclaimed Water". Critical Reviews in Environmental Science and Technology. 45 (13): 1379–1408. doi:10.1080/10643389.2014.955628. ISSN1064-3389. S2CID94839032.
Carvalho PN, Basto MC, Almeida CM, Brix H (October 2014). "A review of plant-pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands". Environmental Science and Pollution Research International. 21 (20). Springer: 11729–11763. Bibcode:2014ESPR...2111729C. doi:10.1007/s11356-014-2550-3. PMID24481515. S2CID25786586.
^Duquette A, Dorr L (2 April 2010). "FAA Proposes New Policy on Antidepressants for Pilots" (Press release). Washington, DC: Federal Aviation Administration, U.S. Department of Transportation. Archived from the original on 14 January 2012. Retrieved 10 February 2012.